
WIND RIVER HELIX DEVICE
CLOUD FOR WIND RIVER
LINUX AND IDP XT
PROGRAMMER'S GUIDE, 1.2

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Copyright Notice

Copyright © 2022 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the
prior written permission of Wind River Systems, Inc.

Wind River, Simics, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc. Helix, Pulsar, Rocket,
Titanium Cloud, Titanium Control, Titanium Core, Titanium Edge, Titanium Edge SX, Titanium Server, and the Wind River logo
are trademarks of Wind River Systems, Inc. Any third-party trademarks referenced are the property of their respective owners.
For further information regarding Wind River trademarks, please see:

www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant notices (if any) are provided for your
product on the Wind River download and installation portals:

https://delivers.windriver.com/

https://windshare.usa.windriver.com/

Wind River may refer to third-party documentation by listing publications or providing links to third-party websites for
informational purposes. Wind River accepts no responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River

500 Wind River Way

Alameda, CA 94501-1153

U.S.A.

Toll free (U.S.A.): +1-800-545-WIND

Telephone: +1-510-748-4100

Facsimile: +1-510-749-2010

For additional contact information, see the Wind River website:

www.windriver.com

For information on how to contact Customer Support, see:

www.windriver.com/support

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

29 January 2019

https://www.windriver.com/company/terms/trademark.html
https://delivers.windriver.com/
https://windshare.usa.windriver.com/
https://www.windriver.com/
https://www.windriver.com/support/

1. WIND RIVER HELIX DEVICE CLOUD FOR WIND RIVER
LINUX AND IDP XT PROGRAMMER'S GUIDE, 1.2

1| Documentation Wind River Helix Device Cloud for Wind River Linux and IDP XT
Programmer's Guide, 1.2

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

2. HELIX DEVICE CLOUD OVERVIEW
• Introduction to Helix Device Cloud on page 2
• Where to Find Information on page 3

1. Introduction to Helix Device Cloud

The Wind River Helix Device Cloud (HDC) enables distributed management of devices from cloud-based applications.

HDC can run on top of Wind River Linux (ARM and Intel architecture targets only) or Wind River Intelligent Device Platform (IDP) XT
(Intel architecture targets supported by IDP XT only).

Devices run the HDC Agent to securely transmit telemetry (such as alarms, data, and events) to the HDC Server. You can access the
telemetry information from the HDC Console or through a Web-based application. HDC enables you to write custom Web-based
applications using HDC Platform REST API (hosted by the Mashery API Manager) calls over HTTP to manage devices that run the
HDC Agent.

HDC for IDP XT and HDC for Wind River Linux enable you to build applications using the HDC Agent APIs for the Wind River Linux
operating system. To successfully write HDC applications, you need to know how to use Wind River Linux.

HDC for IDP XT enables systems and applications to use the security and management tools available in IDP XT. To successfully use
HDC for IDP XT, you need to know how to use IDP XT.

To find the prerequisite information about these operating environments, see Where to Find Information on page 3.

The following diagram shows the device-side component architecture and the overall end-to-end architecture. You use the Wind
River Host Tools to develop your application on your host computer.

2| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

About the HDC Agent

The HDC Agent, also referred to as the WR Agent (WRA), is a dedicated Linux process that services requests from user applications
and from the HDC Server. Each device runs a single instance of the HDC Agent, which can handle requests from multiple
applications.

The HDC Agent runs as the wr-iot-agent service and you can use the systemctl command to start, stop, and get the status of the
service.

Certificates and Credentials

The information you received with the details of your purchase order of Helix Device Cloud includes the following:

• your HDC Server URL•

• certificates and credentials for the HDC Server•

• credentials for the Wind River Mashery website•

• an API key for the Mashery APIs•

You need this information to log in to the HDC Console and to use the REST APIs in your cloud application.

To install your certificates, in a web browser, navigate to your HDC Server and log in with the user name and password you received.
For instructions about installing your certificates, see Using SSL/TLS with Axeda Platform, 6.8, which is available on the Knowledge
Library.

2. Where to Find Information

Documentation is available from the Wind River Knowledge Library and through the Wind River help system.

The following documentation is available:

Wind River Helix Device Cloud Documentation

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide (this document)

Provides instructions for configuring devices to run the HDC Agent and writing HDC applications.

Wind River Helix Device Cloud Agent API Reference

Provides reference information about the HDC Agent API.

Wind River Helix Device Cloud for IDP XT Release Notes

?Provides general product information about HDC for IDP XT, changes in this release, usage caveats, and known problems.

Wind River Helix Device Cloud for Wind River Linux Release Notes

?Provides general product information about HDC for Wind River Linux, changes in this release, usage caveats, and known
problems.

Wind River Helix Device Cloud Platform API Reference

Provides information about using the REST APIs to write web applications for HDC.

3| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

https://windriver-staging.zoominsoftware.io/bundle/Wind_River_Helix_Device_Cloud_for_Wind_River_Linux_and_IDP_XT_Programmers_Guide_1.2_1/page/
https://windriver-staging.zoominsoftware.io/bundle/Wind_River_Helix_Device_Cloud_for_Wind_River_Linux_and_IDP_XT_Programmers_Guide_1.2_1/page/

Wind River IDP XT Documentation

?Wind River Intelligent Device Platform XT Programmer's Guide, 3.x

?Provides instructions for installing and configuring the Intelligent Device Platform and modifying it for your specific
requirements.

?Wind River Intelligent Device Platform XT Security Guide, 3.x

?Provides guidance on performing a security analysis and matching IDP XT capabilities with assessed needs.

?Wind River Intelligent Device Platform XT Release Notes, 3.x

?Provides general product information, changes in this release, usage caveats, and known problems.

Wind River Linux Documentation

?Wind River Linux Getting Started Guide, 7.0

?Provides instructions for creating, modifying, deploying, and debugging platform and application projects using the command-
line and Workbench.

Wind River Linux Platform Developer's Guide, 7.0

Provides information about ?command-line instructions for configuring, building, and developing platform projects as well as
detailed information on the development environment and build system.

?Wind River Linux Getting Started Workbench Tutorials, 7.0

?Provides procedures and examples for using Workbench to configure, build, and debug Wind River Linux application, platform,
and kernel module projects.

Wind River Linux User Space Developer's Guide, 7.0

Provides information about using the Wind River Linux SDK to develop Linux user space applications.

 NOTE: ?This list represents the primary documents for developing HDC on IDP XT and Wind River Linux and is not complete.
For the full set of documents that come with IDP XT and Wind River Linux, see the Wind River Intelligent Device
Platform for IDP XT Programmer's Guide, 3.x and the Wind River Linux Getting Started Guide, 7.0, respectively.

Axeda Documentation

The following documentation is available in the Knowledge Library:

4| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Using SSL/TLS with Axeda Platform, 6.8

Provides instructions about installing your HDC certificates.

Accessing Documentation

To access documentation through the Workbench main menu, select Help > Help Contents > Wind River Documentation.

To access documentation through the file system in the installation directory (installDir), do the following:

PDF Versions

Point your PDF reader to the *.pdf file, for example:
installDir /wrlinux-7/docs/docs/extensions/eclipse/plugins/
com.windriver.ide.doc.wr_hdc_for_wr_linux_and_idp_xt_1.2/
wr_helix_device_cloud_for_wr_linux_and_idp_xt_programmers_guide/
wr_helix_device_cloud_for_wr_linux_and_idp_xt_programmers_guide_12.pdf

HTML Versions

Point your Web browser to the index.html file, for example:
installDir /wrlinux-7/docs/docs/extensions/eclipse/plugins/
com.windriver.ide.doc.wr_hdc_for_wr_linux_and_idp_xt_1.2/
wr_helix_device_cloud_for_wr_linux_and_idp_xt_programmers_guide/index.html

To access documentation, log on to Knowledge Library at knowledge.windriver.com, and select:

Products > Internet of Things > Helix Device Cloud.

To access the Mashery I/O Docs website, log on to the following website using the Mashery user name and password you received:

http://windriver.mashery.com

5| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

https://windriver-staging.zoominsoftware.io/bundle/Wind_River_Helix_Device_Cloud_for_Wind_River_Linux_and_IDP_XT_Programmers_Guide_1.2_1/page/
http://windriver.mashery.com

3. BUILDING AND BOOTING
• About the wrenv.sh Script on page 6
• About Building and Booting on page 6
• Building and Booting HDC for IDP XT on page 8
• Building and Booting HDC for Wind River Linux on page 12

1. About the wrenv.sh Script

The wrenv.sh script sets all the Wind River Linux-related environment variables, including the path to the configure command for
platform projects.

The command to run the script is:

$ installDir/wrenv.sh -p wrlinux-7

If you choose not to run wrenv.sh, you must explicitly specify the full path to the configure command instead of just specifying
$WIND_LINUX_CONFIGURE_CLI in your configure line. The full path is similar to installDir /wrlinux-7/wrlinux/configure.

All the examples in this guide assume that you have executed wrenv.sh.

2. About Building and Booting

You build a platform project for your board on your development host to create a file system that contains the base operating
environment and the HDC Agent.

For information about supported development hosts, see Wind River Linux System Requirements - Recommended Hosts List, 7.0.

Platform Project Configuration for IDP XT

To use the IDP XT operating environment, which includes Wind River Linux, you need the following configuration settings:

• the wr-idp addon•

• the wr-iot and sys-version layers•

For information about supported targets, see Wind River Intelligent Device Platform XT Release Notes, 3.x.

Platform Project Configuration for Wind River Linux

To use the Wind River Linux operating system without IDP XT, you need the following configuration settings:

• the wr-iot layer•

• the sys-version layer•

Additional Platform Configuration Options

Optionally, you can also enable the following for both IDP XT and Wind River Linux:

• the --with-template=feature/remote-session template (see Logging in to the Device Remotely on page 61)•

6| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

• the wr-hdc-examples layer (see the README file included with the layer)•

HDC Agent Configuration

As part of the configuration process, you must use the iot-config.py script to specify additional configuration settings for the HDC
Agent. You must specify the server name for the HDC Agent to register with. You can also specify the following:

• additional HDC Server settings, such as the port number•

• device settings, such as the model number of the device•

• internal agent settings•

• proxy support settings•

• the default root password (otherwise, the default password is root)•

For more information about the options available in the iot-config.py script, see iot-config.py on page 71.

 NOTE: Part of the HDC Server configuration includes the port number the device uses to connect to the server. You must
ensure that the default port, 443, or the port you configure is open on firewalls between the device and the server.

Software Update Configuration

To enable software update, you need to specify a string for the system version during the build process. You establish your naming
convention for your system versions when you first build your root file system. You will need the system version later when you create
a software update file.

You can use any convention to track your versions, but the name cannot contain spaces. Each individual platform project requires a
unique initial system version. You do not need to change the system version each time you rebuild the platform project, but you must
ensure that your final platform project for deployment has the required version.

Building and Booting Workflow

1. Configure the platform project.

2. Configure the HDC Agent.

3. Specify the system version of the image.

4. Build the platform project.

5. Deploy the images to the boot media.

6. Boot the device.

7. Confirm that the device successfully registered with the HDC Server.

7| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

3. Building and Booting HDC for IDP XT

• Building Your IDP XT Platform Project on page 8
• Deploying Your IDP XT Platform Project on page 9

3.1. Building Your IDP XT Platform Project

The platform project for your board includes a file system, kernel image, and boot loader.

The instructions in this section provide the steps to build an image for a device with the minimal configuration required to run the
HDC Agent with all security features enabled under IDP XT.

For more information about configuring additional HDC functionality, see About Building and Booting on page 6.

There are additional configuration options available in IDP XT and Wind River Linux. The IDP XT documentation describes the
available security features and how to enable and disable them. For more information about the available IDP XT and Wind River
Linux documents, see Where to Find Information on page 3.

Prerequisites

You must have installed IDP XT, which includes the HDC source code, on your host computer.

You need the following additional packages on your Linux host:

• bc•

• bsdmainutils•

• kpartx•

• lvm2•

• rpm2cpio•

1. Create a new directory projDir for your platform project and configure the platform project for your board.
Add --enable-addons=wr-idp, --with-layer=wr-iot,sys-version,wr-ima-appraise to the $WIND_LINUX_CONFIGURE_CLI
command for your board.
For example, for an Intel Bay Trail board:

$ mkdir -p projDir
$ cd projDir
$ $WIND_LINUX_CONFIGURE_CLI --enable-board=intel-baytrail-64 \
--enable-rootfs=idp --enable-kernel=idp \
--enable-addons=wr-idp --with-layer=wr-iot,sys-version,wr-ima-appraise \
?--enable-reconfig

The resulting configuration creates an image with all available security features enabled.
The source code files for the HDC Agent are now available in the following directory:
projDir /layers/wr-idp/wr-iot

2. To configure the HDC Agent, run the iot-config.py script.
You must run the iot-config.py script from your project directory (projDir) after the $WIND_LINUX_CONFIGURE_CLI
command, and before the make command.
This example configures the server name the HDC Agent registers with, the model number it uses, a ping rate
between the agent and server of 6000 milliseconds (six seconds), and the default password for the root user.

$ cd projDir
$ layers/wr-idp/wr-iot/scripts/iot-config.py \

8| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

-s "server_address:windriver.axeda.com,model_number:MyModel,ping_rate:6000" \
--password newRootPassword --salt 1234

3. Specify the initial version of the software in the projDir /layers/wr-idp/sys-version/recipes-sys-version/sys-version/files/sys-
version.txt file.

$ echo mySysVersion > projDir/layers/wr-idp/sys-version/recipes-sys-version\
/sys-version/files/sys-version.txt

4. Build the platform project for your board.

$ make

The projDir /export/images directory now contains files for the root file system, kernel image, and boot loader.

You are ready to your prepare your boot media and boot your device.

Related information
Logging in to the Device Remotely on page 61
Creating a Project Manifest on page 47

3.2. Deploying Your IDP XT Platform Project

During the deployment process, you create your boot media and use it to boot your board.

You can deploy your platform project to any device supported by IDP XT.

The deployment process creates a factory default image on your boot media. By default, the rootfs image you specify is also the
factory default.

The -e option of the deploy.sh script is intended for use specifically with HDC. It is equivalent to specifying -s 8G -f rootfsFilename -u
-y -l 1 -L 45%VG -F rootfsFilename . If you also specify the individual options after the -e option, they override the values of the -e
option.

Use the -e option unless you have specific requirements for different values.

The following table explains the default values of the -e option and the interaction with other options.

Option Purpose

-s 8G
Creates an 8 GB file if the device specified by the -d
option is a file. Otherwise, it is ignored.

-f rootfsFilename
Specifies the file name of the rootfs image to deploy. If
the -F option is not specified, the same image file is
used as the factory default image.

-y
Formats the device specified by the -d option and
creates a VFAT and ext3 partition on the device.

-u Deploys UEFI files in the first VFAT partition.

-l 1 Creates an LVM partition on the device to support
rollback during software update. If the -L option is not

9| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Option Purpose

specified, the LVM partition uses 45% of the unused
space on the boot media.

-L 45%VG
Specifies how much space (percentage of the volume
group) to use on the boot media for the LVM partition. If
the -l is not specified, it is automatically enabled.

-F rootfsFilename

Specifies the rootfs image to use as the factory default
image. If no other options are specified, it updates only
the factory default image on the boot media; the
contents of the other partitions are not affected.

 NOTE:

• It is not possible to disable the creation of a factory default image.

For more information about the deploy.sh script and the other available options, change to projDir and execute ./deploy.sh -h.

The instructions in this section use a USB flash drive for deployment. Other methods are not supported for deploying HDC.

Prerequisites

Before you create the boot media and boot your device, you need the following:

• Your device BIOS must be up to date. For information about how to update the BIOS image, see Wind River Intelligent Device•
Platform XT Programmer's Guide: Building and Booting.

• Your boot media must have at least 8 GB capacity.•

• You need the images generated from your platform project (see Building Your IDP XT Platform Project on page 8).•

To ensure that your device can connect to the HDC Server, ensure that the default port, 443, or the port you specified when you
configured the HDC Agent is open on firewalls between the device and the HDC Server.

1. Deploy the images to your boot media and boot your board.
1. Create a bootable image on a USB flash drive:
In the following examples, yourDevice is the location of your USB flash drive in the file system on your host, for
example, sdb.
The following example shows the options to create a bootable image on a USB flash drive and use the same
image as the factory default for an Intel Bay Trail board for use with HDC:

10| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

$ cd projDir/export
$ sudo ../deploy.sh -e intel-baytrail-64-idp-idp-dist-srm.tar.bz2 \
-d /dev/yourDevice

The following example shows the options for a Cross Hill board.

$ cd projDir/export
$ sudo ../deploy.sh -e intel-quark-idp-idp-dist-srm.tar.bz2 \
-d /dev/yourDevice

2. Connect your device to a display device compatible with its display port.
3. Connect your device to the network.
4. With the device powered off, insert the bootable USB flash drive, and then power on the device.

The device boots and the login prompt appears. The last four digits of the prompt are the last four digits of the MAC
address of the device.

Wind River Linux 7.0.0.10 WR-IDP-0604 ttyS1

WR-IDP-0604 login:

 NOTE: To run agent-related commands on the device, you must log in as the wra user. The user name and default
password are:

User ID: wra
Password: wra

The device registers with the HDC Server automatically when it boots and appears in the list of assets.

2. Confirm successful registration of your device on the HDC Server.
1. Log in to the HDC Console.
2. Click ASSETS.
3. Confirm that your device appears in the list of assets.
You might need to filter by connection status or model.

4. To view the asset dashboard, click the asset name.
5. In the Uploaded Files section, verify that the /var/wra/files/default/wra.log file has been uploaded from the device.
6. To open the log file, click the log file name and check the contents to ensure that there are no errors.
7. In the Data section, verify that the value of the system-version data item corresponds to the value you specified when you
configured and built your platform project.

If your device does not appear on the HDC Server, check the hostname you specified for the HDC Server hostname
with the iot-config.py script. To fix an incorrect hostname, go back to step 2 on page 8 in Building Your IDP XT
Platform Project on page 8.

You are now ready to develop your application.

11| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Postrequisites

• You may want to take note of the IP address of the device (available in the uploaded log file) in case you need to recover•
connectivity later.

• To enable you to do software updates, you must now preserve your build environment and create a project manifest as the•
baseline for creating the update package. For more information about software updates and how to create the manifest, see
the following:

- About Software Update on page 46-

- Creating a Project Manifest on page 47-

4. Building and Booting HDC for Wind River Linux

• Building Your Wind River Linux Platform Project for ARM Target Devices on page 12
• Deploying Your Wind River Linux Platform Project to an ARM Target Device on page 13
• Building Your Wind River Linux Platform Project for Intel Target Devices on page 16
• Deploying Your Wind River Linux Platform Project to an Intel Target Device on page 18

4.1. Building Your Wind River Linux Platform Project for ARM Target Devices

The platform project for your board includes a file system, kernel image, and boot loader.

The instructions in this section provide the steps to build an image for an ARM target device with the minimal configuration to run the
HDC Agent under Wind River Linux.

For more information about configuring additional HDC functionality, see About Building and Booting on page 6.

For more information about the additional configuration options available in Wind River Linux, see the Wind River Linux Platform
Developer's Guide.

The steps in this section use a Microzed board as an example. For a list of the ARM boards available for the --enable-board option,
execute $WIND_LINUX_CONFIGURE_CLI -h.

Prerequisites

You must have installed Wind River Linux on your host computer.

You must have downloaded the HDC source code RPM (included with your HDC purchase) to your host computer.

You need the following additional packages on your Linux host:

• bc•

• bsdmainutils•

• kpartx•

• lvm2•

• rpm2cpio•

1. If you have not already done so, install the HDC source code RPM on your host computer.
The installDir directory is the installation directory for Wind River Linux. Ensure that you do not disable installer
upgrades.

12| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

$ installDir/maintenance/wrInstaller/x86-linux2/wrInstaller \
-yum localinstall ?wr-iot-1.2.2.x-WRLinux7.noarch.rpm

2. Create a new directory projDir for your platform project and configure the platform project for your board.
Add --with-layer=wr-iot,sys-version to the $WIND_LINUX_CONFIGURE_CLI command for your board.
The following example shows the options for a MicroZed board.

$ mkdir -p projDir
$ cd projDir
$?$WIND_LINUX_CONFIGURE_CLI --enable-kernel=standard \
--enable-board=xilinx-zynq \
--enable-rootfs=glibc_std \
--with-layer=wr-iot,sys-version \
--enable-reconfig

The source code files for the HDC Agent are now available in the following directory:
projDir /layers/wr-iot

3. To configure the HDC Agent, run the iot-config.py script.
You must run the iot-config.py script from your project directory (projDir) after the $WIND_LINUX_CONFIGURE_CLI
command, and before the make command.
This example configures the server name the HDC Agent registers with, the model number it uses, a ping rate
between the agent and server of 6000 milliseconds (six seconds), and the default password for the root user.

$ cd projDir
$ layers/wr-iot/scripts/iot-config.py \
-s "server_address:windriver.axeda.com,model_number:MyModel,ping_rate:6000" \
--password newRootPassword --salt 1234

4. Specify the initial version of the software in the projDir /layers/sys-version/recipes-sys-version/sys-version/files/sys-version.txt
file.

$ echo mySysVersion > projDir/layers/sys-version/recipes-sys-version\
/sys-version/files/sys-version.txt

5. Build the platform project for your board.

$ make

The projDir /export/images directory now contains files for the root file system, kernel image, and boot loader.

You are ready to your prepare your boot media and boot your device.

Related information
Logging in to the Device Remotely on page 61
Creating a Project Manifest on page 47

4.2. Deploying Your Wind River Linux Platform Project to an ARM Target Device

During the deployment process, you create your boot media and use it to boot your board.

You must use the deploy.sh script to create your boot media with images that include the HDC Agent. Other methods of creating
your boot media are not supported.

The -e option of the deploy.sh script is intended for use specifically with HDC. It is equivalent to specifying -s 8G -f rootfsFilename -y
-l -L 45%VG. If you also specify the individual options after the -e option, they override the values of the -e option. Use the -e option
unless you have specific requirements for different values.

13| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

The following table explains the default values of the -e option and the interaction with other options.

Option Purpose

-s 8G
Creates an 8 GB file if the device specified by the -d
option is a file. Otherwise, it is ignored.

-y
Formats the device specified by the -d option and
creates a VFAT and ext3 partition on the device.

-f rootfsFilename Specifies the file name of the rootfs image to deploy.

-l

Creates an LVM partition on the device to support
rollback during software update. If the -L option is not
specified, the LVM partition uses 45% of the unused
space on the boot media.

-L 45%VG

Specifies how much space (percentage of the volume
group) to use on the boot media for the LVM partition. If
the -l is not specified, the -L option automatically
enables it.

For more information about the deploy.sh script and the other available options, change to projDir and execute ./deploy.sh -h.

The instructions in this section use an SD card for deployment.

Prerequisites

Before you create the boot media, you need the images generated from your platform project (see Building Your Wind River Linux
Platform Project for ARM Target Devices on page 12)

To ensure that your device can connect to the HDC Server, ensure that the default port, 443, or the port you specified when you
configured the HDC Agent is open on firewalls between the device and the HDC Server.

1. Deploy the images to your boot media and boot your board.
1. Create a bootable image on an SD card:
In the following example, yourDevice is the location of your SD card in the file system on your host, for example,
mmcblk0.
The following example shows the options to create a bootable image for a MicroZed board:

$ cd projDir/export
$ sudo ../deploy.sh -e ?xilinx-zynq-glibc-std-standard-dist.tar.bz2 \
-d /dev/yourDevice \
?-b zed

2. Connect your device to a display device compatible with its display port.
3. Connect your device to the network.
4. With the device powered off, insert the bootable SD card, and then power on the device.

2. The first time you boot your device, configure the boot loader.
1. During the boot sequence, press any key when you see the following on the serial console:

Hit any key to stop autoboot: 3

14| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

2. Set up the u-boot environment to boot from the SD card and continue the boot process.

 NOTE: Ensure that you execute the following commands only the first time you boot the device. Execute the
commands one at a time on the command line. Do not use a script or batch file.

uboot >setenv kernel_image uImage
uboot >setenv devicetree_image devicetree.dtb
uboot> setenv bootonce_inprogress no
uboot> ?setenv wr_bootargs 'console=ttyPS0,115200 earlyprintk
 root=/dev/mapper/rootfs-runtime'
uboot> ?setenv wr_bootonce_args 'console=ttyPS0,115200 earlyprintk
 root=/dev/mapper/rootfs-runtime bootonce'
uboot> ?setenv wr_test_bootonce 'if test ${bootonce_inprogress} = no ; then run wr_bootonce_
sdboot
 ; else run wr_normal_sdboot ; fi'
uboot> ?setenv wr_bootonce_sdboot 'setenv bootonce_inprogress yes; saveenv ; setenv bootarg
s
 $wr_bootonce_args && echo ** BootOnce ** Copying Linux from SD to RAM... && mmcinfo &&
fatload
 mmc 0 0x3000000 ${kernel_image} && fatload mmc 0 0x2A00000 ${devicetree_image} && boot
m
 0x3000000 - 0x2A00000'
uboot> ?setenv wr_normal_sdboot 'setenv bootonce_inprogress no ; saveenv ; setenv bootargs
 $wr_bootargs && echo Normal Boot Copying Linux from SD to RAM... && mmcinfo && fatload
mmc 0
 0x3000000 ${kernel_image} && fatload mmc 0 0x2A00000 ${devicetree_image} && bootm 0x30
00000 -
 0x2A00000'
uboot> setenv bootcmd 'if fatls mmc 0:1 /bootonce; then run wr_test_bootonce; else run
 wr_normal_sdboot; fi'?
uboot> ?saveenv
uboot> boot

The device boots and the login prompt appears.

Wind River Linux 7.0.0.10 localhost ttyPS0

localhost login:

15| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

 NOTE: To run agent-related commands on the device, you must log in as the wra user. The user name and default
password are:

User ID: wra
Password: wra

The device registers with the HDC Server automatically when it boots and appears in the list of assets.

3. Confirm successful registration of your device on the HDC Server.
1. Log in to the HDC Console.
2. Click ASSETS.
3. Confirm that your device appears in the list of assets.
You might need to filter by connection status or model.

4. To view the asset dashboard, click the asset name.
5. In the Uploaded Files section, verify that the /var/wra/files/default/wra.log file has been uploaded from the device.
6. To open the log file, click the log file name and check the contents to ensure that there are no errors.
7. In the Data section, verify that the value of the system-version data item corresponds to the value you specified when you
configured and built your platform project.

If your device does not appear on the HDC Server, check the hostname you specified for the HDC Server hostname
with the iot-config.py script. To fix an incorrect hostname, go back to step 3 on page 13 in Building Your Wind River
Linux Platform Project for ARM Target Devices on page 12.

You are now ready to develop your application.

Postrequisites

• You may want to take note of the IP address of the device (available in the uploaded log file) in case you need to recover•
connectivity later.

• To enable you to do software updates, you must now preserve your build environment and create a project manifest as the•
baseline for creating the update package. For more information about software updates and how to create the manifest, see
the following:

- About Software Update on page 46-

- Creating a Project Manifest on page 47-

4.3. Building Your Wind River Linux Platform Project for Intel Target Devices

The platform project for your board includes a file system, kernel image, and boot loader.

The instructions in this section provide the steps to build an image for an Intel target device with the minimal configuration to run the
HDC Agent under Wind River Linux.

For more information about configuring additional HDC functionality, see About Building and Booting on page 6.

16| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

For more information about the additional configuration options available in Wind River Linux, see the Wind River Linux Platform
Developer's Guide.

The steps in this section use an Intel Bay Trail board as an example. For a list of the Intel boards available for the --enable-board
option, execute $WIND_LINUX_CONFIGURE_CLI -h.

Prerequisites

You must have installed Wind River Linux on your host computer.

You must have downloaded the HDC source code RPM (included with your HDC purchase) to your host computer.

You need the following additional packages on your Linux host:

• bc•

• bsdmainutils•

• kpartx•

• lvm2•

• rpm2cpio•

1. If you have not already done so, install the HDC source code RPM on your host computer.
The installDir directory is the installation directory for Wind River Linux. Ensure that you do not disable installer
upgrades.

$ installDir/maintenance/wrInstaller/x86-linux2/wrInstaller \
-yum localinstall ?wr-iot-1.2.2.x-WRLinux7.noarch.rpm

2. Create a new directory projDir for your platform project and configure the platform project for your board.
Add --with-layer=wr-iot,sys-version to the $WIND_LINUX_CONFIGURE_CLI command for your board.
The following example shows the options for an Intel Bay Trail board:

$ mkdir -p projDir
$ cd projDir
$?$WIND_LINUX_CONFIGURE_CLI --enable-kernel=standard \
--enable-board=intel-baytrail-64 \
--enable-rootfs=glibc_std \
--with-layer=wr-iot,sys-version \
--enable-reconfig

The source code files for the HDC Agent are now available in the following directory:
projDir /layers/wr-iot

3. To configure the HDC Agent, run the iot-config.py script.
You must run the iot-config.py script from your project directory (projDir) after the $WIND_LINUX_CONFIGURE_CLI
command, and before the make command.
This example configures the server name the HDC Agent registers with, the model number it uses, a ping rate
between the agent and server of 6000 milliseconds (six seconds), and the default password for the root user.

$ cd projDir
$ layers/wr-iot/scripts/iot-config.py \
-s "server_address:windriver.axeda.com,model_number:MyModel,ping_rate:6000" \
--password newRootPassword --salt 1234

4. Specify the initial version of the software in the projDir /layers/sys-version/recipes-sys-version/sys-version/files/sys-version.txt
file.

17| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

$ echo mySysVersion > projDir/layers/sys-version/recipes-sys-version\
/sys-version/files/sys-version.txt

5. Build the platform project for your board.

$ make

The projDir /export/images directory now contains files for the root file system, kernel image, and boot loader.

You are ready to your prepare your boot media and boot your device.

Related information
Logging in to the Device Remotely on page 61
Creating a Project Manifest on page 47

4.4. Deploying Your Wind River Linux Platform Project to an Intel Target Device

During the deployment process, you create your boot media and use it to boot your board.

You must use the deploy.sh script to create your boot media with images that include the HDC Agent. Other methods of creating
your boot media are not supported.

 NOTE: Do not use the Wind River Linux make usb-image-burn command to create your boot media on a USB flash drive.

The -e option of the deploy.sh script is intended for use specifically with HDC. It is equivalent to specifying -s 8G -f rootfsFilename -y
-l -L 45%VG. If you also specify the individual options after the -e option, they override the values of the -e option. Use the -e option
unless you have specific requirements for different values.

The following table explains the default values of the -e option and the interaction with other options.

Option Purpose

-s 8G
Creates an 8 GB file if the device specified by the -d
option is a file. Otherwise, it is ignored.

-y
Formats the device specified by the -d option and
creates a VFAT and ext3 partition on the device.

-f rootfsFilename Specifies the file name of the rootfs image to deploy.

-l Creates an LVM partition on the device to support
rollback during software update. If the -L option is not

18| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Option Purpose

specified, the LVM partition uses 45% of the unused
space on the boot media.

-L 45%VG

Specifies how much space (percentage of the volume
group) to use on the boot media for the LVM partition. If
the -l is not specified, the -L option automatically
enables it.

For more information about the deploy.sh script and the other available options, change to projDir and execute ./deploy.sh -h.

The instructions in this section use a USB flash drive for deployment.

Prerequisites

Before you create the boot media, you need the images generated from your platform project (see Building Your Wind River Linux
Platform Project for Intel Target Devices on page 16)

To ensure that your device can connect to the HDC Server, ensure that the default port, 443, or the port you specified when you
configured the HDC Agent is open on firewalls between the device and the HDC Server.

1. Deploy the images to your boot media and boot your board.
1. Create a bootable image on a USB flash drive:
In the following example, yourDevice is the location of your USB flash drive in the file system on your host, for
example, sdb.
The following example shows the options to create a bootable image for an Intel Bay Trail board:

$ cd projDir/export
$ sudo ../deploy.sh -e intel-baytrail-64-glibc-std-standard-dist.tar.bz2 \
-d /dev/yourDevice

2. Connect your device to a display device compatible with its display port.
3. Connect your device to the network.
4. With the device powered off, insert the bootable USB flash drive, and then power on the device.

The device boots and the login prompt appears.

Wind River Linux 7.0.0.12 localhost ttyPS0

localhost login:

19| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

 NOTE: To run agent-related commands on the device, you must log in as the wra user. The user name and default
password are:

User ID: wra
Password: wra

The device registers with the HDC Server automatically when it boots and appears in the list of assets.

2. Confirm successful registration of your device on the HDC Server.
1. Log in to the HDC Console.
2. Click ASSETS.
3. Confirm that your device appears in the list of assets.
You might need to filter by connection status or model.

4. To view the asset dashboard, click the asset name.
5. In the Uploaded Files section, verify that the /var/wra/files/default/wra.log file has been uploaded from the device.
6. To open the log file, click the log file name and check the contents to ensure that there are no errors.
7. In the Data section, verify that the value of the system-version data item corresponds to the value you specified when you
configured and built your platform project.

If your device does not appear on the HDC Server, check the hostname you specified for the HDC Server hostname
with the iot-config.py script. To fix an incorrect hostname, go back to step 3 on page 13 in Building Your Wind River
Linux Platform Project for Intel Target Devices on page 16.

You are now ready to develop your application.

Postrequisites

• You may want to take note of the IP address of the device (available in the uploaded log file) in case you need to recover•
connectivity later.

• To enable you to do software updates, you must now preserve your build environment and create a project manifest as the•
baseline for creating the update package. For more information about software updates and how to create the manifest, see
the following:

- About Software Update on page 46-

- Creating a Project Manifest on page 47-

20| Documentation Building and Booting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

4. APPLICATION DEVELOPMENT
• About HDC Applications on page 21
• HDC Agent APIs on page 22
• About Data Telemetry on page 25
• Sending Data to the HDC Server on page 26
• Receiving Data from the HDC Server on page 29
• Sending Alarms to the HDC Server on page 33
• Sending Events to the HDC Server on page 37
• Receiving Actions from the HDC Server on page 39
• Receiving Files from the HDC Server on page 42
• Sending Files to the HDC Server on page 44

1. About HDC Applications

To transmit and receive information between the device and the HDC Server, you need to write an application to run on the device
that communicates with the server through the HDC Agent.

The HDC Agent provides C APIs to enable you to create an application on the device to transmit telemetry to the HDC Server and
receive files, actions, and data from the HDC Server.

The application must allocate the memory for the telemetry objects. The number of telemetry objects in the system is limited only by
the amount of memory available. Once the application sends the telemetry object to the agent, the application can modify or destroy
the object.

The value of queue_size, which you can specify using the iot-config.py script, determines the number of objects waiting for
transmission to the HDC Server.

The HDC Agent does not enable multiple tasks to share a single telemetry object, but multiple tasks can operate on separate
telemetry objects simultaneously. If multiple tasks require access to a single telemetry object, it is the responsibility of the application
to ensure exclusive access.

When the agent starts or restarts, the device queue is emptied and all registrations are discarded. Applications are not notified when
the agent starts. If you need to start or restart the agent using the systemctl command, you need to reboot the device to ensure that
applications reestablish registrations for data telemetry, actions, and files.

The HDC Agent runs in user space as the wra user.

Source Code Files

After you run the configure command, the source code files are located in the following directories on your host computer:

Platform Path

IDP XT projDir /layers/wr-idp/wr-iot

Wind River Linux projDir /layers/wr-iot

Writing your Application

You need to write a C code application that runs in Linux user space. You must ensure that your application is compatible with any
security features enabled on the device. To build your application, you need to write a recipe file to compile it and create an RPM,

21| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

and then add it to the rootfs using a layer. When you build the rootfs, it is included in the image you use to boot the device. During
development, you can include your application in projDir /layers/local. Once you are ready to release your application, you need to
create your own layer.

For more information about Linux applications, recipes, and layers, see the Wind River Linux Platform Developer's Guide.

Link your application against libwraclient.a.

Your application must run as the wra user.

Your application must ensure that it successfully retrieves the agent handle before calling any agent APIs. The agent handle is only
available after the agent task starts. To ensure that your application task starts after the agent task, in your systemd Unit
configuration, specify the After and Requires options as follows:

[Unit]
Requires=wr-iot-agent.service
After=wr-iot-agent.service

For more information about systemd, see https://wiki.archlinux.org/index.php/Systemd.

The application must allocate the memory for the telemetry objects. The number of telemetry objects in the system is limited only by
the amount of memory available. Once the application sends the telemetry object to the agent, the application can modify or destroy
the object.

To install your application on the device, you can do one of the following:

• If you include your application in the rootfs, follow the procedure to deploy the images to your boot media and boot your•
board. For instructions, see the following:

- Deploying Your IDP XT Platform Project on page 9-

- Deploying Your Wind River Linux Platform Project to an ARM Target Device on page 13-

- Deploying Your Wind River Linux Platform Project to an Intel Target Device on page 18-

• Install it using the software update process. During the test and modification iterations of developing your application, run the•
procedure to create the update package, and install it from the HDC Server. For more information, see About Software Update
on page 46.

• Copy your RPM to the device manually, for example, using SCP and install it using standard RPM commands. For example,•
execute rpm -ivh yourPackage .

If you run HDC on IDP XT and you have the wr-srm layer enabled (the default), you need to sign the RPM first.

For more information about running applications under IDP XT with security features enabled, see the Wind River Intelligent Device
Platform XT Programmer's Guide.

2. HDC Agent APIs

Applications use the HDC Agent APIs to create, destroy, and modify telemetry objects and to exchange information with the HDC
Server.

Telemetry APIs

Telemetry includes data, alarms, and events. Attribute types are string, integer, boolean, or double (large floating point). Each
telemetry object type supports a subset of the following attributes, which are specified and retrieved with generic set and get
functions:

22| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

https://wiki.archlinux.org/index.php/Systemd

Name

Telemetry object name.

Description

Textual description of the telemetry object.

Severity

Integer value representing the severity level. Higher values indicate greater severity.

Priority

Transmission priority of the telemetry object to the HDC Server. Objects are transmitted according to priority in a first in, first
out order.

Active

Indicates if the telemetry object is currently in the active state.

Ack

Indicates if the telemetry object has been acknowledged.

Condition

Textual description of the category or nature of the telemetry object. The category is specific to the telemetry object type and
to the application.

Data

Data value to transmit to the server, for example, a sensor reading.

Datatype

Data type of the data attribute. This attribute is set automatically by the HDC Agent.

Auxiliary

A reference to a telemetry object embedded within the telemetry object.

The following macros for telemetry are available:

Constant Value

WRA_TM_DATATM data-tm

WRA_TM_ALARMTM alarm-tm

WRA_TM_EVENTTM event-tm

Functions return a handle or a status. For the list of possible status return codes, see the wra_types.h file. The agent provides the
following APIs.

23| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Function Description

wra_tm_create() Creates a telemetry object and allocates the required memory.

wra_tm_destroy() Destroys a telemetry object and frees the associated memory.

?wra_tm_reset() Resets the telemetry object attributes to default values.

?wra_tm_setvalue_string() Specifies the value of a string type attribute.

?wra_tm_setvalue_int() Specifies the value of an integer type attribute.

?wra_tm_setvalue_double() Specifies the value of an double type attribute.

?wra_tm_setvalue_bool() Specifies the value of an boolean type attribute.

?wra_tm_setaux() Specifies the handle of the embedded telemetry object.

?wra_tm_getvalue_string() Retrieves the value of a string type attribute.

?wra_tm_getvalue_int() Retrieves the value of an integer type attribute.

?wra_tm_getvalue_double() Retrieves the value of a double type attribute.

?wra_tm_getvalue_bool() Retrieves the value of a boolean type attribute.

?wra_tm_getaux() Retrieves the handle of the embedded telemetry object.

wra_tm_settimestamp() Sets the timestamp of a telemetry object.

wra_tm_gettimestamp() Gets the timestamp of a telemetry object.

wra_gethandle() Retrieves the HDC Agent handle.

wra_delete_handle() Deletes the HDC Agent handle.

wra_tm_post()
Sends a telemetry object to the HDC Agent to transmit to the HDC
Server.

Device Management APIs

The following APIs enable the application to register for and receive actions, files, and data from the HDC Server.

Functions return a status. For the list of possible status return codes, see the wra_types.h file. The agent provides the following APIs.

24| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Function Description

wra_action_subscribe()
Registers a handler function to call when the HDC
Server sends an action to the device.

wr_action_unsubscribe()
Deregisters a handler function previously registered
against the specified action.

wra_action_wait() Waits for a subscribed action from the HDC Server.

wra_file_download()
Registers and waits for a specified file from the HDC
Server.

wra_file_upload()
Uploads a specified file to the HDC Server and waits for
confirmation.

wra_tm_subscribe()
Registers and waits for a specified telemetry object from
the HDC Server. Only data telemetry objects are
supported.

3. About Data Telemetry

The application on the device and the HDC Server exchange data telemetry using data items (server) and data telemetry objects
(application).

The application on the device creates and posts data telemetry objects to transmit data to the HDC Server. The server sees the data
as data items and it can use these to modify the data values on the device if an application subscribes to the associated data object.
Data items are defined on a per-model basis.

The server and the application must have a common view of data. The names and types of data objects on the device and the
corresponding data items on the server must match. The following table shows the mapping of data types between the application
and the server.

Server Type Application Type

analog double (the default)

string string

digital Boolean

The data items and values sent from the device appear in the Data section of the asset dashboard. The server can change data
values, but updates to the values in the Data section do not appear unless the application calls the wra_tm_post() function to echo
the value back to the server.

To enable the HDC Server to modify data on the device using actions and software package instructions, data items representing the
data objects must be available for the associated model on the server before creating the associated actions and software packages.

You can do one of the following to make the data items available for a specific model on the HDC Server:

25| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

• Use the Model wizard on the HDC Console to create data items in the model definition. You can create the data items at the•
same time as you create the model, or you can edit the model later to add more data items. For information about using the
Model wizard on the HDC Console, see the console online help.

• In the application on the device, use the APIs to create and post data objects before you create the associated action on the•
HDC Server. For information about how to create data objects in an application, see Sending Data to the HDC Server on
page 26. Be sure specify a default value for the data object, otherwise, the data item type has the default value (double) and
you cannot change the type when you send the data from the HDC Server.

If you want to use an expression rule to send a data item to the application on the server, you do not need to precreate the data item
on the server. However, the data item name must match the data object name that the application specifies in the
wra_tm_subscribe() function.

4. Sending Data to the HDC Server

Data objects enable an application to send data from the device to the HDC Sever.

To send data to the HDC Server, use the HDC Agent APIs to create the data telemetry object and populate it with the data to send.
The application is responsible for accessing the underlying hardware (if any) to provide the data values. The server can process the
data either from the HDC Console or through the REST APIs.

After the application sends the data telemetry object to the server the first time, the server can then use it to send data back to the
application.

The following shows the valid attribute types and ranges for the data telemetry object.

 NOTE: The agent does not support integer type data values. Use the double data type for numerical values.

Attribute Macro
Set Function
Supported
Types

Get Function
Supported
Types

Supported Range

WRA_TM_ATTR_NAME string string
maximum 128 characters including the
terminating null byte

WRA_TM_ATTR_PRIORITY int int
WRA_TM_PRIO_LOW,
WRA_TM_PRIO_MEDIUM,
WRA_TM_PRIO_HIGH

WRA_TM_ATTR_DATA string string
maximum 256 characters including the
terminating null byte

26| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Attribute Macro
Set Function
Supported
Types

Get Function
Supported
Types

Supported Range

double double range of double

bool bool WRA_TRUE, WRA_FALSE

WRA_TM_ATTR_DATATYPE1 on
page 29

N/A int
WRA_TM_DATATYPE_STRING,
WRA_TM_DATATYPE_BOOL,
WRA_TM_DATATYPE_DOUBLE

Data attributes have the following default values:

Attribute Value

priority WRA_TM_PRIO_MEDIUM

datatype double

data 0

1. Retrieve the agent handle.

agentHandle = wra_gethandle();

Ensure that agentHandle is not NULL before proceeding.

2. Create the data object.
Specify the WRA_TM_DATATM object type and a string for the data object name.

?
wra_tm_handle dataHandle;

dataHandle = wra_tm_create(WRA_TM_DATATM, "dataName");

3. Specify the data value.
The source of the data is application-dependent. The function to call depends on the data value type. The valid data
types are string, double, and boolean.
The tm parameter is the handle to the data object returned from the wra_tm_create() function.

/* Retrieve the data from the data source, not shown */

/* Set the data value */
status = wra_tm_setvalue_double(dataHandle, WRA_TM_ATTR_DATA, dataValue);

4. Specify the data attributes (optional).
You only need to specify values for the attributes if you want to change the default values.
The tm parameter is the handle to the data object returned from the wra_tm_create() function.

?
status = wra_tm_setvalue_int(dataHandle, WRA_TM_ATTR_PRIORITY, WRA_TM_PRIO_LOW);

27| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

5. Update the timestamp (optional).
When a data object is created, the agent initializes the timestamp to the current time. The agent automatically
updates the timestamp to the current time when the data value is updated. If you want to set a timestamp, it should
be the last function called before sending the data object to the HDC Agent.

/* get timeofday and set the timestamp */
gettimeofday(&tv, NULL);
tstamp.tv_sec = tv.tv_sec;
tstamp.tv_usec = tv.tv_usec;
status = wra_tm_settimestamp(dataHandle, &tstamp);

6. Send the data object to the HDC Agent to transmit to the HDC Server.
The wra_service_h and wra_notification_h parameters must be set to WRA_NULL.

status = wra_tm_post(agentHandle, dataHandle, WRA_NULL, WRA_NULL);

7. Free the data object.

wra_tm_destroy(dataHandle);

The memory allocated for the object is freed.

 NOTE: To reuse the data object instead of destroying it, call the wra_tm_reset() function to reset the data attributes to
system defaults before specifying new attribute values.

The data object name appears in the Data section on the HDC Console.

Example

The following example uses a data object to send floating point data to the HDC Server. The example does not show the steps to
gather the data from the source.

?
#include <stdio.h>
#include "wra.h"

wra_handle wra;
wra_tm_handle tm_data;
wra_status rc;
wra = wra_gethandle ();

/* allocate a telemetry data object */
tm_data = wra_tm_create(WRA_TM_DATATM, "tm-data");

28| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

if (tm_data == WRA_NULL)
 {
 printf ("Could not create an data telemetry object\n");
 return WRA_ERR_FAILED;
 }

rc = wra_tm_setvalue_int (tm_data, WRA_TM_ATTR_PRIORITY, WRA_TM_PRIO_HIGH);
rc = wra_tm_setvalue_double (tm_data, WRA_TM_ATTR_DATA, 60.0);
rc = wra_tm_post (wra, tm_data, WRA_NULL, WRA_NULL);

/* treat queue full errors as a warning, but count them */
if (rc == WRA_ERR_NO_MEMORY)
 {
 printf ("could not post tm %s - returned WRA_ERR_NO_MEMORY\n", "wra_tm_post");
 rc = !WRA_SUCCESS;
 }

if (rc != WRA_SUCCESS)
 {
 printf ("could not post tm %s - returned %d\n","wra_tm_post", rc);
 return rc;
 }

wra_tm_destroy(tm_data);

1 on page 27

The agent automatically sets the datatype attribute based on the function the application calls to specify the data value.

5. Receiving Data from the HDC Server

The HDC Server can change data values on the device if an application subscribes to the associated data telemetry object.

The HDC Server may change the value of data on the device to synchronize activity between the server and the application and to
alter predefined behavior on the device. For example, the server may want to change the threshold of an alarm if it receives too
many false positives.

The application specifies the name of the data item to wait for and optionally, a timeout. If you specify a timestamp for the timeout,
the application task or thread blocks until the HDC Server sends the data or the timeout expires. If you specify NULL for the timeout,
the application task or thread blocks until the HDC Server sends the data. Both the server and the application must use the same
data name and type (string, double, boolean). The application must allocate the memory for the data objects to which it subscribes.
Multiple applications can subscribe to the same data object.

If the server sends data and there is no application waiting for it, the HDC Agent discards the data; applications do not receive any
data sent before the subscribe function is called. To ensure that the application always receives data sent from the server, you may
want to use a dedicated thread or task to wait for data.

The following steps describe how to use an action on the HDC Console to send data and assume that data items are created using
the Model wizard as part of the model definition before creating the action. To implement the same functionality using the REST
APIs, use the Data Item object along with the Software Package object, the Deployment object, and the Expression Rule object APIs.

1. Retrieve the agent handle.

wra_h = wra_gethandle();

29| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Ensure that wra_h is not NULL before proceeding.

2. Request the data from the server.
Specify the telemetry handle, the name of the data object, and optionally, a timeout. The name must match the name
of the data item the HDC Server specifies. To wait with a timeout, specify a timestamp for the tmo parameter.

wra_tm_handle dataHandle;
status = wra_tm_subscribe(wra_h, dataHandle, "dataName", NULL);

The application thread blocks until the HDC Server transmits the data to the application through the HDC Agent.

3. When the function returns, retrieve the type of the data object.

int g_int = 0;
wra_tm_getvalue_int(g_data_h, WRA_TM_ATTR_DATATYPE, &g_int);

4. Based on the type of the data object, call the associated function to get the data value.

if (g_int == WRA_TM_DATATYPE_STRING)
 wra_tm_getvalue_string(g_data_h,WRA_TM_ATTR_DATA, &g_str);

5. At the HDC Console, create an action to specify the value of the data item.
1. Log in to the HDC Console.
2. Click MANAGE and then select New > Action.
The Create Action page appears.

3. In the Name box, type actionName , where actionName is the name of the action.
4. From the Category list, select Asset update actions.
5. Choose Set data item on the asset and then click Next.
The Models For Action page appears.

6. From the list of available models, select the models to which you want to apply the action, click Add Checked and then
click Next.
7. From the Data Item list, select the data item you want to change.
Only data items created in the model definition or data items that the application has previously posted to the
server appear in the list. The application on the device must subscribe to a data object with the same name.

8. In the Value box, type the value of the data item and then click Next.
9. On the ?User Groups That Handle Edit Permissions For Action page, click Finish.
10. On the Confirm Changes To Action page, click Finish.
The Actions page appears and your new action appears in the list.

6. To run the action, do one of the following.
• To run the action manually, from the Actions list on the asset dashboard, click actionName .

• To run the action automatically, create a rule or an expression rule to run the action based on specified criteria.

Data is sent to the device and delivered to any application waiting for it.

Example: Subscribe to data created as a data item on the HDC Server

The following example shows the code to subscribe to the HDCdata data object of type string.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include "wra.h"

#define IF_WRA_TM_FAILED(rc) \
 if(rc != WRA_SUCCESS)

30| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

int telemetry_subscription(void)
{
 wra_handle wra_h; /* Agent handle */
 wra_tm_handle data_h; /* Telemetry data handle */
 wra_status rc;
 char *g_str;
 string mystring;
 int g_int = 0;

 /* Get a handle to the agent */
 wra_h = wra_gethandle();
 if(wra_h == WRA_NULL) {
 printf("Failed to get agent handle\n");
 return WRA_ERR_FAILED;
 }

 /* Subscribe to the data from the HDC Server */
 rc = wra_tm_subscribe(wra_h, data_h,"HDCdata", NULL);
 IF_WRA_TM_FAILED(rc) return WRA_ERR_FAILED;

 /* Get the data type */
 wra_tm_getvalue_int(g_data_h, WRA_TM_ATTR_DATATYPE, &g_int);

 if (g_int == WRA_TM_DATATYPE_STRING) {
 /* Fetch data item name attribute */
 rc = wra_tm_getvalue_string(data_h,WRA_TM_ATTR_NAME, &g_str);
 IF_WRA_TM_FAILED(rc) return WRA_ERR_FAILED;

 printf("name :: %s\n",g_str);

 rc = wra_tm_getvalue_string(data_h, WRA_TM_ATTR_DATA, &mystring);
 IF_WRA_TM_FAILED(rc) return WRA_ERR_FAILED;
 }

 printf("string value :: %s\n",mystring);
}

int main(int argc, char **argv)
{
 return telemetry_subscription();
}

The following shows the an example of data item creation in the Model wizard.

31| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Example: Subscribe to data created and posted by the application

The following shows the application creating and posting the HCDdata data object of type double to make the data item available
on the HDC Server.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include "wra.h"

#define IF_WRA_TM_FAILED(rc) \
 if(rc != WRA_SUCCESS)

int telemetry_subscription(void)
{
 wra_handle wra_h; /* Agent handle */
 wra_tm_handle data_h; /* Telemetry data handle */
 wra_status rc;
 char *g_str;
 double mydouble;
 int g_int = 0;

 /* Get a handle to the agent */
 wra_h = wra_gethandle();
 if(wra_h == WRA_NULL) {
 printf("Failed to get agent handle\n");
 return WRA_ERR_FAILED;
 }

 /* Create a data item */
 data_h = wra_tm_create(WRA_TM_DATATM, "HDCdata");

 /* Set and send data item to the HDC Server so that it will available
 in the Acton Creation data items drop down list */
 rc = wra_tm_setvalue_double(data_h, WRA_TM_ATTR_DATA, 100);

32| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

 IF_WRA_TM_FAILED(rc) return WRA_ERR_FAILED;

 rc = wra_tm_post(wra_h,data_h, NULL,NULL);
 IF_WRA_TM_FAILED(rc) return WRA_ERR_FAILED;

 /* Subscribe to the data from the HDC Server */
 rc = wra_tm_subscribe(wra_h, data_h, "HDCdata", NULL);
 IF_WRA_TM_FAILED(rc) return WRA_ERR_FAILED;

 /* Get the data type */
 wra_tm_getvalue_int(g_data_h, WRA_TM_ATTR_DATATYPE, &g_int);

 if (g_int == WRA_TM_DATATYPE_DOUBLE) {
 /* Fetch data item name attribute */
 rc = wra_tm_getvalue_string(data_h,WRA_TM_ATTR_NAME, &g_str);
 IF_WRA_TM_FAILED(rc) return WRA_ERR_FAILED;

 printf("name :: %s\n",g_str);

 rc = wra_tm_getvalue_double(data_h,WRA_TM_ATTR_DATA, &mydouble);
 IF_WRA_TM_FAILED(rc) return WRA_ERR_FAILED;

 printf("double value :: %f\n",mydouble);
 }
}

int main(int argc, char **argv)
{
 return telemetry_subscription();
}

6. Sending Alarms to the HDC Server

An alarm indicates an application-defined occurrence that requires attention, such as air pressure that drops below a threshold.

To send alarms from the device to the HDC Server, use the HDC Agent APIs to create the alarm telemetry object and populate it with
the alarm information. Alarms appear on the HDC Server when the occurrence specified in the alarm definition occurs. The server can
process the alarm information either from the HDC Console (acknowledge, clear, and escalate) or through the REST APIs.

The HDC Server cannot directly change the value of application-defined alarms.

In addition to alarm information, an alarm object can also contain a data telemetry object to store auxiliary data related to the alarm.
The source of the data is application specific. Both the alarm and data object can specify a priority; however, the data object priority
is ignored.

The following shows the valid attribute types and ranges for the alarm telemetry object.

33| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Attribute Macro
Set Function
Supported
Types

Get Function
Supported
Types

Supported Range

WRA_TM_ATTR_NAME string string
maximum 128 characters including the
terminating null byte

WRA_TM_ATTR_DESC string string
maximum 128 characters including the
terminating null byte

WRA_TM_ATTR_SEVERITY int int range of integer type

WRA_TM_ATTR_PRIORITY int int
WRA_TM_PRIO_LOW,
WRA_TM_PRIO_MEDIUM,
WRA_TM_PRIO_HIGH

WRA_TM_ATTR_ACTIVE bool bool WRA_TRUE, WRA_FALSE

WRA_TM_ATTR_ACK bool bool WRA_TRUE, WRA_FALSE

WRA_TM_ATTR_CONDITION string string
maximum 256 characters including the
terminating null byte

WRA_TM_ATTR_DATATM aux aux only data objects are valid

The alarm is created with the following default values:

Attribute Value

priority WRA_TM_PRIO_MEDIUM

condition WRA_NULL

active WRA_TRUE

severity 0

ack WRA_FALSE

data NULL

1. Retrieve the agent handle.

agentHandle = wra_gethandle();

Ensure that agentHandle is not NULL before proceeding.

2. Create the alarm object.
Specify WRA_TM_ALARMTM for the object type and a string for the alarm object name.

34| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

wra_tm_handle alarmHandle;

?alarmHandle = wra_tm_create(WRA_TM_ALARMTM, "alarmName");

3. Specify the alarm attributes (optional).
You only need to specify values for the attributes if you want to change the default values.
The tm parameter is the handle to the alarm object returned from the wra_tm_create() function.

?
status = wra_tm_setvalue_int(alarmHandle, WRA_TM_ATTR_PRIORITY, WRA_TM_PRIO_HIGH);
status = wra_tm_setvalue_int(alarmHandle, WRA_TM_ATTR_SEVERITY, 5);

4. Set the auxiliary data (optional).
1. Create the data object and set its attributes. For more information, see Sending Data to the HDC Server on page 26.
2. Set the auxiliary attribute.
The tm parameter is the handle to the alarm object returned from the wra_tm_create() function. The aux
parameter is the handle to the data object returned when you created the data object.

status = wra_tm_setaux(alarmHandle, WRA_TM_ATTR_DATATM, dataItemHandle);

After the function returns, you can destroy the data object.

5. Update the timestamp (optional).
When an alarm object is created, the agent initializes the timestamp to the current time. The agent automatically
updates the timestamp when the alarm becomes active. If you want to update the timestamp, it should be the last
function called before sending the alarm object to the HDC Agent.

/* get timeofday and set the timestamp */
gettimeofday(&tv, NULL);
tstamp.tv_sec = tv.tv_sec;
tstamp.tv_usec = tv.tv_usec;
status = wra_tm_settimestamp(alarmHandle, &tstamp);

6. Send the alarm object to the HDC Agent to transmit to the HDC Server.

status = wra_tm_post(agentHandle, alarmHandle, WRA_NULL, WRA_NULL);

7. Free the alarm object.

wra_tm_destroy(alarmHandle);

 NOTE: To reuse the alarm object instead of destroying it, call the wra_tm_reset() function to reset the attributes to
system defaults before specifying new attribute values.

35| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

The memory allocated for the object is freed.

The alarm object name appears in the Alarms section on the HDC Console.

Example

The following example shows an alarm that is triggered when the CPU temperature exceeds a threshold. The auxiliary data indicates
the temperature at the time the alarm occurs. The example does not show the steps to gather the data from the source or the steps
to trigger the alarm condition.

#include <stdio.h>
#include <stdbool.h>
#include "wra.h"

?wra_handle wra;
wra_tm_handle tm_alarm, tm_aux_data;
wra_status rc;

wra = wra_gethandle ();

/* allocate a telemetry alarm object */
tm_alarm = wra_tm_create(WRA_TM_ALARMTM, "tm-temp-too-high");
if (tm_alarm == WRA_NULL)
 {
 printf ("Could not create an alarm telemetry object\n");
 return WRA_ERR_FAILED;
 }

tm_aux_data = wra_tm_create(WRA_TM_DATATM, "tm-temp");
rc = wra_tm_setvalue_int (tm_aux_data, WRA_TM_ATTR_DATA, 35);

?rc = wra_tm_setvalue_string (tm_alarm, WRA_TM_ATTR_DESC, "CPU temperature passed threshold");
rc = wra_tm_setvalue_int (tm_alarm, WRA_TM_ATTR_SEVERITY, 10);
rc = wra_tm_setvalue_int (tm_alarm, WRA_TM_ATTR_PRIORITY, WRA_TM_PRIO_HIGH);
rc = wra_tm_setvalue_bool (tm_alarm, WRA_TM_ATTR_ACTIVE, TRUE);
rc = wra_tm_setvalue_string (tm_alarm, WRA_TM_ATTR_CONDITION, "Alarm condition");
rc = wra_tm_setaux (tm_alarm, WRA_TM_ATTR_DATATM, tm_aux_data);

rc = wra_tm_post (wra, tm_alarm, WRA_NULL, WRA_NULL);

/* treat queue full errors as a warning, but count them */
if (rc == WRA_ERR_NO_MEMORY)
 {
 printf ("could not post tm %s - returned WRA_ERR_NO_MEMORY\n", "tm-temp-too-high");
 rc = !WRA_SUCCESS;
 }
if (rc != WRA_SUCCESS)
 {
 printf ("could not post tm %s - returned %d\n", "tm-temp-too-high", rc);
 return rc;
 }

?wra_tm_destroy(tm_alarm);
wra_tm_destroy(tm_aux_data);

36| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

7. Sending Events to the HDC Server

An event indicates an application-defined occurrence, such as sensor input on a device.

To send events to the HDC Server, use the HDC Agent APIs to create the event telemetry object and populate it with the event
information to send. The server can process the information either from the HDC Console or through the REST APIs.

The HDC Server cannot change the value of application-defined events.

The following shows the valid attribute types and ranges for the event telemetry object.

Attribute Macro
Set Function
Supported
Types

Get Function
Supported
Types

Supported Range

WRA_TM_ATTR_NAME string string
maximum 128 characters including the
terminating null byte

WRA_TM_ATTR_DESC string string
maximum 128 characters including the
terminating null byte

WRA_TM_ATTR_PRIORITY int int
WRA_TM_PRIO_LOW,
WRA_TM_PRIO_MEDIUM,
WRA_TM_PRIO_HIGH

WRA_TM_ATTR_SEVERITY int int range of integer type

The event has the following default values:

Attribute Value

priority WRA_TM_PRIO_MEDIUM

severity 0

1. Retrieve the agent handle.

agentHandle = wra_gethandle();

Ensure that agentHandle is not NULL before proceeding.

2. Create the event object.
Specify the WRA_TM_EVENTTM object type and a string for the event object name.

?
wra_tm_handle eventHandle;

eventHandle = wra_tm_create(WRA_TM_EVENTTM, "eventName");

3. Specify the event attributes (optional).
You only need to specify values for the attributes if you want to change the default values.
The tm parameter is the handle to the event object returned from the wra_tm_create() function.

37| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

?
status = wra_tm_setvalue_int(eventHandle, WRA_TM_ATTR_PRIORITY, WRA_TM_PRIO_LOW);

4. Update the timestamp (optional).
When an event object is created, the agent initializes the timestamp to the current time. If you want to update the
timestamp, it should be the last function called before sending the event object to the HDC Agent.

/* get timeofday and set the timestamp */
gettimeofday(&tv, NULL);
tstamp.tv_sec = tv.tv_sec;
tstamp.tv_usec = tv.tv_usec;
status = wra_tm_settimestamp(eventHandle, &tstamp);

5. Send the event object to the HDC Agent to transmit to the HDC Server.

status = wra_tm_post(agentHandle, eventHandle, WRA_NULL, WRA_NULL);

6. Free the event object.

wra_tm_destroy(eventHandle);

 NOTE: To reuse the event object instead of destroying it, call the wra_tm_reset() function to reset the event attributes to
system defaults before specifying the new values.

The memory allocated for the object is freed.

The event object name appears in the Events section on the HDC Console.

Example

The following example shows how to raise an event. It does not show the occurrence that triggered the event.

?
?#include <stdio.h>
#include "wra.h"

wra_handle wra;
wra_tm_handle tm_event;
wra_status rc;
wra = wra_gethandle ();

/* allocate a telemetry event object */
tm_event = wra_tm_create(WRA_TM_EVENTTM, "tm-event");

38| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

if (tm_event == WRA_NULL)
 {
 printf ("Could not create an event telemetry object\n");
 return WRA_ERR_FAILED;
 }

rc = wra_tm_setvalue_string (tm_event, WRA_TM_ATTR_DESC, "Event raised");
rc = wra_tm_setvalue_int (tm_event, WRA_TM_ATTR_SEVERITY, 10);
rc = wra_tm_post (wra, tm_event, WRA_NULL, WRA_NULL);

/* treat queue full errors as a warning, but count them */
if (rc == WRA_ERR_NO_MEMORY)
 {
 printf ("could not post tm %s - returned WRA_ERR_NO_MEMORY\n", "wra_tm_post");
 rc = !WRA_SUCCESS;
 }
if (rc != WRA_SUCCESS)
 {
 printf ("could not post tm %s - returned %d\n", "wra_tm_post", rc);
 return rc;
 }

wra_tm_destroy(tm_event);

8. Receiving Actions from the HDC Server

Applications can receive and process actions initiated from the HDC Server.

An action is an instruction from the HDC Server to the HDC Agent or an application. The HDC Agent delivers custom actions from
the HDC Server to applications on the device and executes its own predefined actions.

The action from the HDC Server contains an application name and optionally, an argument. To receive and process an action, an
application registers a handler with the agent against the application name. When the server sends the action to the device, the HDC
Agent invokes the handler registered against the application name and passes the argument as a string to the handler function. The
handler function must parse and interpret the string argument. Up to 128 unique applications can register for each action. Multiple
applications can register for the same action.

After subscribing to an action, applications use the wra_action_wait() function to wait with or without a timeout for an action to
occur. If you specify a NULL value for the timeout, the application task or thread blocks until the HDC Server sends any action the
application registers for. The HDC Agent then calls the registered handler function. If you specify a timeout and the timeout expires
before the HDC Server sends a registered action, the HDC Agent does not call any handler function.

If the server sends an action and no application has registered for it, the HDC Agent discards the action and does not call any handler
function. To ensure that the application always receives actions sent from the server, you may want to use a dedicated thread or task
to wait for actions.

The order of actions from the HDC Server is not guaranteed. If there are dependencies on other actions, the handler should verify
that the dependencies are met. For example, if an action requires a file downloaded from the HDC Server, the handler should check if
the file is present on the device.

The following steps describe how to use the HDC Console to create an action. To implement the same functionality using the REST
APIs, use the Software Package object and the Deployment object APIs.

39| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

1. Write the handler function for the action.
Use the following function signature:
The dev_h parameter is currently unused. The handler always receives the value NULL.

myAppHandler(void *dev_h, const char *appname, const char *args)

2. Register the handler function.
The value of the appname parameter must match the appname parameter in the handler function.

int rc;
wra_handle handle;

handle = wra_gethandle();
rc = wra_action_subscribe(handle, myAppHandler,"myAppName");

3. In an appropriate task or thread, call the wra_action_wait() function to wait for an action from the HDC Server.
To wait with a timeout, specify a timestamp for the tm parameter.

wra_action_wait(handle, NULL);

The application blocks until the HDC Agent receives the action from the server and calls the associated application
action handler function.

4. At the HDC Console, create an action to run the application the handler registered for.
1. Log in to the HDC Console.
2. Click MANAGE and then select New > Action.
The Create Action page appears.

3. In the Name box, type actionName , where actionName is the name of the action.
4. From the Category list, select Asset update actions.
5. Choose Execute an application and then click Next.
The Configure Execute Action page appears.

6. In the Absolute file path & name box, type the string that matches the appname parameter you specify when you
register the handler.
7. If your handler accepts an argument, in the File arguments box, type the argument name.
The argument is passed to the handler function and it must match a string that the handler function expects.

8. Click Next.
9. On the ?User Groups That Handle Edit Permissions For Action page, click Finish.
10. On the Confirm Changes To Action page, click Finish.
The Actions page appears and your new action appears in the list.

5. To run the action, do one of the following.
• To run the action manually, from the Actions list on the asset dashboard, click actionName .

• To run the action automatically, create a rule or an expression rule to run the action based on specified criteria.

The action is delivered to the device and the HDC Agent calls all registered action handlers.

40| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Example

The following example shows an application that prints a message on the device console when invoked from the HDC Server. Ensure
that you register the handler before attempting to run the corresponding action from the HDC Server.

#include <stdio.h>
#include "wra.h"
#include <string.h>
#define APP_NAME "myAppName"

int app_main(void *dev, const char *appname, const char *args)
{
 (void)dev;

 if (!appname) {
 printf(" appname is empty \n");
 return WRA_ERR_BAD_PARAM;
 }

 if (strncmp(appname,APP_NAME,sizeof(APP_NAME))) {
 printf(" bad appname %s . My app name is %s\n",appname,APP_NAME);
 return WRA_ERR_BAD_PARAM;
 }

 printf("%s reached: %s \"%s\"\n", __FUNCTION__, appname, args?args:"");
 return WRA_SUCCESS;
}

int action_subscription()
{
 wra_handle wra_h; /* Agent handle */

 /* Get a handle to the agent */
 wra_h = wra_gethandle();

 if(wra_h == WRA_NULL) {
 printf("We failed to get agent handle\n");
 return WRA_ERR_FAILED;
 }

 if (wra_action_subscribe(wra_h,app_main,APP_NAME) != WRA_SUCCESS) {
 printf("failed to subscribe application %s \n",APP_NAME);
 } else {
 while (1) {
 if (wra_action_wait(wra_h,NULL) != WRA_SUCCESS) {
 printf("failed to execute the action\n");
 }
 }

 /* delete the handle if while (1) is not used above */
 if (wra_delete_handle(wra_h)!= WRA_SUCCESS) {
 printf("failed to cleanup the handle\n");
 return WRA_ERR_FAILED;
 }

 return WRA_SUCCESS;

41| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

}

int main(int argc, char **argv)
{
 action_subscription();
 return 0;
}
?

9. Receiving Files from the HDC Server

An application can wait for the HDC Server to send a file to one or more applications on the device.

HDC does not impose any restrictions on the file types you can download, but the security features on the device may require
additional steps, such as signing executable programs or whitelisting files.

The application specifies the file name to wait for and optionally, the full path to the destination directory, and a timeout. The
destination directory must exist and the wra user must have write permission for the directory. If you specify a timestamp for the
timeout, the application task or thread blocks until the HDC Server downloads the file or the timeout expires. If you specify NULL for
the timeout, the application task or thread blocks until the HDC Server downloads the file. When an application requests a file from
the HDC Server, the HDC Agent sends the wra_file_request data item to the HDC Server with the file name as the data item value.

The file download directory can be specified by the application in the dir parameter and in the download instruction on the server.
The directory specified by the application takes precedence. If the application does not specify a directory (the dir parameter is
NULL), the download directory is relative to the default download directory on the device, /var/wra/files/default. On the HDC
Server, when downloading application-specific files, selecting Path is relative to agent directory has no effect. The following table
shows an example of where the agent stores a received file based on the values specified by the application and the destination
directory on the server.

Application Destination Directory Download Directory

/path/to/myfile /another/path /path/to/myfile

NULL /path/to/myfile /var/wra/files/default/path/to/
myfile

NULL Not specified /var/wra/files/default

If the agent receives a file and there is no application waiting for it, the agent stores the file in the default download directory. If the
file is already present on the file system before an application requests it, the application is not notified. To ensure that the
application always receives the notification as soon the device receives the file from the server, you may want to use a dedicated
thread or task to wait for the file. Multiple applications can request the same file.

Creating and Triggering File Downloads from the HDC Server

You create an action to download the file. You can run the action manually from the asset dashboard or you can use an expression
rule to trigger the file download. For example, you could use DataItem.wra_file_request.changed as the condition to trigger calling
the action to download the file.

You can also create a software package to download a file with instructions. You can deploy the package manually or according to a
schedule.

42| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

For information about expression rules, software packages, and other features of the HDC Console, see the console online help.

The following instructions describe how to use an action on the HDC Console to send a file. To implement the same functionality
using the REST APIs, use the Software Package object and the Deployment object APIs.

1. Retrieve the agent handle.

wra_h = wra_gethandle();

Ensure that wra_h is not NULL before proceeding.

2. In an appropriate thread, call the function to request the file.
Specify the name of the file, the directory in the file system, and optionally, a timeout.

status = wra_file_download(wra_h, myFilename, myDirectory, NULL);

The agent sends the wra_file_download data item to the HDC Server and the value of the data item is the file name.
The application blocks until the HDC Agent receives the file from the server and delivers it to the application.

3. When the function returns, retrieve the specified file from the location specified in the dir parameter or from the default file
location.

4. On the HDC Server, create an action to download the file.
1. Log in to the HDC Console.
2. Click MANAGE and then select New > Action.
3. In the Name box, type actionName , where actionName is the name of the action.
4. From the Category list, select Software management actions.
5. Choose Download files to an asset and then click Next.
The Configure Download Action page appears.

6. Click Browse, select the file to download and then click Upload.
When the file finishes uploading, the message File uploaded successfully appears.

7. If required, select Overwrite existing files.
8. Click Next.
9. On the ?User Groups That Handle Edit Permissions For Action page, click Finish.
10. On the Confirm Changes To Action page, click Finish.
The Actions page appears and your new action appears in the list.

5. To run the action, do one of the following.
• To run the action manually, from the Actions list on the asset dashboard, click actionName .

• To run the action automatically, create a rule or an expression rule to run the action based on the required criteria.

The file is sent to the device and the HDC Agent notifies all applications waiting for it.

Example

If you specify the path parameter, the agent puts the file in the specified directory, otherwise the agent places it in the default
download directory.? You must execute this example code as the wra user.

#include <stdio.h>
#include <unistd.h>
#include "wra.h"
#include <string.h>
#include <errno.h>

int file_subscription(const char *file, const char *path)
{
 wra_handle wra_h; /* Agent handle */

43| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

 int rc; /* Return code */
 int i;

 /* Get a handle to the agent */
 wra_h = wra_gethandle();
 if(wra_h == WRA_NULL) {
 printf("We failed to get agent handle\n");
 return WRA_ERR_FAILED;
 }

 if ((rc = wra_file_download(wra_h,file,path,NULL)) != WRA_SUCCESS)
 printf("failed to download file %s %s\n",file, rc == WRA_ERR_ETIMEDOUT ? "timedout":"Error")
;
 else {
 printf("got file successfully!!!\n");
 }

/* delete the handle */
 if (wra_delete_handle(wra_h)!= WRA_SUCCESS)
 printf("failed to cleanup the handle\n");
 return WRA_SUCCESS;
}

int main(int argc,char **argv)
{
 if (argc < 2){
 printf("use: %s filename path\n",argv[0]);
 return -1;
 }
 (void)file_subscription(argv[1],argv[2]);
 return 0;
}

10. Sending Files to the HDC Server

An application on the device can upload files to the HDC Server.

For example, an application may want to upload log files for debugging purposes. The application can wait for the HDC Agent to
notify it when the HDC Server successfully receives the file. If you specify a NULL value for the timeout, the application task or thread
blocks until the file uploads successfully. If the application does not need the upload notification, it can specify a short timeout, for
example, one second. If multiple applications upload files, the files are sent to the server in first in, first out order. The wra user must
have read access to the file.

1. Retrieve the agent handle.

wra_h = wra_gethandle();

Ensure that wra_h is not NULL before proceeding.

2. In an appropriate thread or task, call the function to upload the file.
Specify the name of the file including the file path and optionally, a timeout value in seconds.

status = wra_file_upload(wra_h, myFilename, NULL);

44| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

The application blocks while the HDC Agent tries to upload the file. If the file uploads successfully, the file appears in
the Uploaded Files section of the asset dashboard. The status return code indicates the success or failure of the
upload attempt.

Example

In the following example, specify the full pathname and file name for the filepath argument. You must execute this example code as
the wra user.

#include <stdio.h>
#include <unistd.h>
#include "wra.h"
#include <string.h>
#include <errno.h>

int file_upload_test(char *filename)
{
 wra_handle wra_h; /* Agent handle */
 int rc; /* Return code */

 /* Get a handle to the agent */
 wra_h = wra_gethandle();

 if(wra_h == WRA_NULL) {
 printf("We failed to get agent handle\n");
 return WRA_ERR_FAILED;
 }

 if ((rc=wra_file_upload(wra_h,filename,NULL)) != WRA_SUCCESS)
 printf("failed to upload file %s \n",filename);
 else {
 printf("File uploaded successfully!!!\n");
 return 0;
 }

 /* delete the handle */
 if (wra_delete_handle(wra_h)!=WRA_SUCCESS)
 printf("failed to cleanup the handle\n");
 return WRA_SUCCESS;
}

int main(int argc, char **argv)
{
 if (argc < 2 || argv[1]==NULL) {
 printf("use: ./%s %s \n\n", argv[0] , "absolute_path_and_file_name_to_upload");
 return -1;
 }
 file_upload_test(argv[1]);
 return 0;
}

45| Documentation Application Development

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

5. SOFTWARE UPDATE
• About Software Update on page 46
• Creating a Project Manifest on page 47
• Creating a Project Update File on page 48
• Creating the Software Update Package on page 51
• Deploying the Software Update Package Manually on page 53
• Confirming Successful Software Update on page 55

1. About Software Update

You can update the software on a running device from the HDC Server, and the HDC Agent automatically installs the update.

Software update from the HDC Server is also referred to as an over-the-air update (OTA). You can update applications on the device,
the HDC Agent (package name wr-iot-agent), and the kernel. You can also use the software update process to onboard the device
when it registers with the HDC Server for the first time.

You generate a single update file on your host computer that contains a set of RPMs that were added, changed, or removed between
an original baseline platform project and the updated platform project. The file also contains the instructions to update the RPMs.
The RPMs are automatically updated on the device when the device receives the update file from the HDC Server.

If your device runs IDP XT with the wr-srm layer enabled, the update process enables you to sign the packages when you create the
update file. The software update process is compatible with other security features that may be enabled on the device.

The update file contains all the affected RPMs, regardless of how many have changed in the platform project, but does not contain
files changed outside of an RPM. You cannot specify a specific set of RPMs to change other than by controlling the set of packages
you change.

The device to update must run exactly the set of RPMs recorded in the original manifest list, otherwise, the update may leave the
device in an undefined state. For example, if you add or remove RPMs manually and then apply the update, some steps of the
update may fail.

The update process does not track the sequence of the versions of the update files you create. You need to manage the versions of
your package manifests and the update files you generate.

After you create the update file, you upload it to the HDC Server and create a software package for deployment. You can deploy the
package from the server manually or automatically according to a set of rules or a schedule. For example, you can schedule the
update to occur automatically during scheduled maintenance or off-peak hours. To onboard the device, you can automatically update
the device if the software on the device is not the latest version.

Before the update process begins, the HDC Agent captures a snapshot of the software currently running on the device. After the
update process completes, if the agent fails to reconnect to the server within three minutes, the software on the device automatically
rolls back to the software captured in the snapshot.

To enable rollback for IDP XT, you must use the -l 1 -L options, which are included by default in the -e option, with the deploy.sh
script when you create your boot media. For more information about creating your boot media for IDP XT and the required options,
see Deploying Your IDP XT Platform Project on page 9.

To enable rollback for Wind River Linux, you must use the -l -L options, which are included by default in the -e option, with the
deploy.sh script when you create your boot media. For more information about creating your boot media for Wind River Linux and
the required options, see the following:

• Deploying Your Wind River Linux Platform Project to an ARM Target Device on page 13•

• Deploying Your Wind River Linux Platform Project to an Intel Target Device on page 18•

46| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

The software update process does not affect the factory default image, and you cannot change the factory image using software
update. A factory image is only supported for HDC for IDP XT.

The basic workflow is as follows:

1. When you build your project, create an initial project manifest.

2. Create a new image for your project with the package changes.

3. Create the update package that contains the differences between your original and new images.

4. On the HDC Server, create and deploy a software package to deploy the update to the device.

5. Confirm that the updates installed successfully on the device.

2. Creating a Project Manifest

A project manifest is a snapshot of the packages and versions in your project at a specific point in time.

The project manifest is the baseline used for creating a list of the differences between the original platform project and an updated
platform project. You create the manifest on your host computer from your platform project directory after you build the initial image.
You must create a new manifest if you want to use a different project as your initial baseline.

Prerequisites

You must have your original platform project directory that created the software running on the devices you want to update, and the
project must use the system version you want to use as your initial version. For more information, see the following:

• Building Your IDP XT Platform Project on page 8•

• Building Your Wind River Linux Platform Project for ARM Target Devices on page 12•

• Building Your Wind River Linux Platform Project for Intel Target Devices on page 16•

It is a good practice to create the manifest from the platform project that you use to boot your target device the first time.

1. To capture the current project baseline, run the wr_generate_pkglist.sh from your project directory.
The following example creates a package manifest for an IDP XT platform project.

$ cd projDir
$?layers/wr-idp/wr-iot/scripts/ota/wr_generate_pkglist.sh \
export/dist/etc/sys-version.txt $PWD

The following example creates a package manifest for a Wind River Linux platform project.

$ cd projDir
$?layers/wr-iot/scripts/ota/wr_generate_pkglist.sh \
export/dist/etc/sys-version.txt $PWD

The sys-version.txt file identifies the version to compare against when creating the update package.
The script creates the projDir /init_build_manifest file, which contains the list of RPM package names and versions
currently in your platform project.

2. Store the init_build_manifest file to use later when you make changes to your platform project and you want to create the update
file.

47| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

3. Creating a Project Update File

The update file contains the RPM packages that changed and instructions to update the device to which the update file is applied.

After you add, change, or delete packages in your current project, you need to create the update file to use in the update process. To
create the file, run the wr_create_update_image.sh script, which compares the current list of packages in the image with the list of
packages in the initial project manifest. The syntax is as follows:

wr_create_update_image.sh initialPackageManifest updatedProjDir \
newSystemVersion noreboot|reboot signing|nosiging [rebootDelay]

The signing is only applicable for HDC for IDP XT.

The projDir /export/dist/etc/sys-version.txt file contains the version of the newly built rootfs. The update script compares it against
the file to identify the revision change. The default version is rev1 or the value you specified when you first built the rootfs. For more
information about specifying the system version, see the following:

• Building Your IDP XT Platform Project on page 8•

• Building Your Wind River Linux Platform Project for ARM Target Devices on page 12•

• Building Your Wind River Linux Platform Project for Intel Target Devices on page 16•

If you run HDC on IDP XT and you have the wr-srm layer enabled in your platform project (enabled by default), you must specify the
signing option.

You can specify whether to reboot the device after the update completes. If you change the kernel, you must specify reboot.
Otherwise, you need to determine if any of the other updated packages require the device to reboot after the update. If the update
package contains the HDC Agent RPM, the device reboots automatically, regardless of the value of the reboot option.

For more information about the script, see wr_create_update_image.sh on page 73.

The following instructions contain an example of an application update. See the examples below for other types of software updates.

Prerequisites

You must have previously created a project manifest from the original platform project, and the devices to which you will apply the
update must run the images created from that platform project. For more information about creating a manifest, see Creating a
Project Manifest on page 47.

Your user account requires root privileges (permission to use the sudo command) on your host computer. If your account does not
have root privileges, you can add your user name to the /etc/sudoers file to allow your account to use the sudo command.

1. Change the packages in your project as required.
For example, to add the package tcpdump, do the following:

$ make tcpdump.addpkg

If you are updating an existing package, do the following:

$ make pkgname.rebuild

The package change is reflected in your platform project, but is not included yet in the rootfs image.

2. Change the value in the sys-version.txt file to a new version and rebuild it.
For example, replace rev1 (the default) with rev2 in an IDP XT platform project.

48| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

$ echo rev2 > projDir/layers/wr-idp/sys-version/recipes-sys-version/sys-version/files/sys-versio
n.txt
$ make sys-version.rebuild

For example, replace rev1 (the default) with 1.0 in a Wind River Linux platform project.

$ echo 1.0 > projDir/layers/sys-version/recipes-sys-version/sys-version/files/sys-version.txt
$ make sys-version.rebuild

3. Create the new image.

$ make

The new image now reflects any package changes you made and is ready to use compare against the original
manifest to build the update file.

4. To create the update package, execute the wr_create_update_image.sh script from your updated project directory.
The following example shows how to create a signed update package for IDP XT and specifies that the device does
not need to reboot after installing the update.

?$ cd projDir
$ layers/wr-idp/wr-iot/scripts/ota/wr_create_update_image.sh \
/pathTo/init_build_manifest $PWD \
export/dist/etc/sys-version.txt noreboot signing

The following example shows how to create an update package for Wind River Linux and specifies that the device
does not need to reboot after installing the update.

?$ cd projDir
$ layers/wr-iot/scripts/ota/wr_create_update_image.sh \
/pathTo/init_build_manifest $PWD \
export/dist/etc/sys-version.txt noreboot

The script creates the projDir /update-image.img file, which contains the RPMs and instructions required to update
the RPMs on your device.
The script output indicates the versions used for the comparison and lists the packages that will be updated on the
device.

|rev1| |rev2|
 **Generating update image
 **Found some package(s) to be added or upgraded

 **Creating the image

sys-version-1.0-r0.1.corei7_64.rpm
tcpdump-4.6.1-r0.0.corei7_64.rpm
stage dir ./wrbuild-a9pz
356 ./wrbuild-a9pz
IMAGE_SIZE=356
extra IMAGE_SIZE 370
SIZE_ALIGN 512
[sudo] password for user:
./wrbuild-iOI2
./wrbuild-iOI2/tcpdump-4.6.1-r0.0.corei7_64.rpm
./wrbuild-iOI2/idp-update.json
./wrbuild-iOI2/sys-version-1.0-r0.1.corei7_64.rpm
./wrbuild-iOI2/lost+found

49| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

 **Created rpm image update-image.img
 **Finished Creating the upgrade image **
 **Generating checksum for update-image.img
 **Generating checksum for update_sys_version

If the output does not show the updates you expect or the update-image.img file is not created, see Fixing Software
Update Problems on page 67.

Example: Agent Update

As part of step 1 on page 48, you can update the HDC Agent. You can execute the iot-config.py script to change the agent
configuration. For example, you might want to change the ping rate. Be sure to also specify the existing settings that you do not
want to change. After you change the configuration, rebuild the agent.

The following example is for IDP XT.

$ cd projDir
$ layers/wr-idp/wr-iot/scripts/iot-config.py \
 -s "server_address:server_name.com,model_number:MyModel,ping_rate:6000"
$ make wr-iot-agent.rebuild

The following example is for Wind River Linux.

$ cd projDir
$ layers/wr-iot/scripts/iot-config.py \
 -s "server_address:server_name.com,model_number:MyModel,ping_rate:6000"
$ make wr-iot-agent.rebuild

Follow the remaining steps in the procedure to create the update-image.img file. The output shows that the wr-iot-agent RPM is
included in the update file.

Example: Kernel Update

As part of step 1 on page 48, you can update the kernel. Kernel configuration is an advanced option and you should ensure that you
understand the consequences of any changes you make.

To change the kernel, execute the following command.

$ make linux-windriver.menuconfig

Use the menu that appears to select the required kernel options and then execute the following command to rebuild the kernel.

$ make linux-windriver.rebuild

Follow the remaining steps in the procedure to create the update-image.img file. The output shows that the linux-windriver RPM is
included in the update file.

When the update is deployed from the HDC Server, it will take some time to complete.

50| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Postrequisites

You are now ready to create a software package on the HDC Server that contains the update file and then deploy your update from
the HDC Server to your device.

You can rename the update-image.img file, but you must ensure that you specify the new file name when you create the software
package on the server.

You should create a new project manifest and archive your project directory to enable you to use the project as the baseline to create
future updates.

4. Creating the Software Update Package

To update the device, you create a software package on the HDC Server that contains the update file you created and the package
instructions to install the update.

Software packages are created on a per-model basis; you can only install the software package on models for which the package is
created.

Prerequisites

Before you create the software package on the server, you need the project update file you generated (see Creating a Project Update
File on page 48), and the model must be available on the HDC Server.

The model is available after the first device of the model type registers with the server. Alternatively, you can create the model on the
server using the Model wizard. To create a model using the REST APIs, use the Model object APIs.

Your web browser must have an up-to-date Java plugin installed.

1. Create a new package.
1. Log in to the HDC Console.
2. Click CONTENT and then select New > Package.
3. In the Name text box, type package_name , where package_name is the name of your package.
4. In the Model list, select the model to which package_name can be deployed.
5. Type a numeric value in the Version box.
You need a value in the major box, but you can leave the other boxes empty. You can use any version scheme
you want.

6. Clear Enable Package Retries and then click Next.

 NOTE: Package retries must be disabled to avoid repeated attempts to deploy a bad package.

7. On the Package Dependencies page, click Next.

51| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

2. On the Package Instructions page, add an instruction to download the update file.

1. In the Select Instruction list, select Download File from Platform.

 NOTE: Depending on your browser and operating system, you may see a security warning message or a prompt to
install or update the Java plugin. Take the appropriate action based on the message you see. For example, if
you see a Security Warning dialog, select Always trust the content from this publisher and then click Run.

2. Click Browse, select update-image.img or the file name of the update file if you renamed it, and click Upload.
3. Wait for the File uploaded successfully message to appear.

4. Select Overwrite existing files.
5. Use the default settings for all other options and click Add.

3. On the Package Instructions page, add an instruction to install the update.
1. From the Select instruction list, select Execute Application.

2. In the Application box, type ??wr_start_update.

 NOTE: Ensure that you type the value in the Application box exactly as specified. Do not include spaces or other
characters. Otherwise, the agent does not receive the update instruction.

52| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

3. In the Arguments box, type ?update-image.img (the default update file name), or the file name of the update file if you

renamed it.

 NOTE: Ensure that you type the name of the file you uploaded when you added the Download File from Platform
instruction. Do not include spaces or additional characters in the Arguments box.

4. Click Add and then click Finish.

 CAUTION: Do not add any additional instructions to the package. Other instructions disrupt the update procedure
on the device and the software update may fail.

4. On the Package Confirmation page, click Finish.
The Package Manager page appears and shows your package. You are now ready to deploy the software package
manually or automatically to devices of the model type you selected.

5. Deploying the Software Update Package Manually

Deploying the software package delivers the package contents from the HDC Server to the device where the HDC Agent installs it.

The following instructions are for a manual deployment. You can also deploy the software package automatically using expression
rules and actions. For more information about using expression rules and actions, see the HDC Console online help. To implement
the same functionality using the REST APIs, use the Expression Rules APIs and the Deployment object APIs.

53| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Prerequisites

Before you deploy the update, you need the following:

• The device must be running the software from the platform project from which you created the original manifest.•

• When you created your boot media using the deploy script, you must have used the -l -L options (included if you use the -e•
option). For more information about the required deploy script options, see the following:

- Deploying Your IDP XT Platform Project on page 9-

- Deploying Your Wind River Linux Platform Project to an ARM Target Device on page 13-

- Deploying Your Wind River Linux Platform Project to an Intel Target Device on page 18-

• The wr-iot-agent service must be running on the device.•

• The software package to deploy on the HDC Server must contain the update file you generated (see Creating a Project Update•
File on page 48).

1. Click CONTENT, and then select View > Packages.
2. In the list of packages, locate the package you created.

You may need to filter based on the model or package name.

3. Under the Actions column, click Deploy.
4. On the Select a Deployment Type page, choose Manual Deployment, and then click Next.
5. On the Deployment Routing Criteria page, click Next.
6. On the Select Assets page, select all applicable assets and then click Add Checked.
7. Click Finish.

8. On the Confirmation page, confirm your settings and then click Deploy.

 CAUTION: Do not initiate any other activities on the device until the update finishes, such as actions and deployments, or
reboot the device. If the update process is interrupted, the device may not reconnect to the server.

The server begins downloading the software package and when the download completes, the update process
begins.

9. Monitor the following to track the progress of the update:
• The Audit Log section of the asset dashboard displays the status of the package deployment.

• The OTA Process Status alarm in the Alarms section of the asset dashboard shows a description of the current
status of the update, for example, ? uploading system update log file.

• The historical values of the wr_install_updates.log data item show the progress of each RPM update.

When the update completes, the agent uploads the /var/wra/files/default/wr_install_updates.log file to the server
and it appears in the Uploaded Files section of the asset dashboard.
The data item system-version appears in the Data section to indicate the software version running on the device.

If your update contains a large number of RPMs or you update the kernel, it may take some time to complete the update.

54| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

If the update requires a device reboot, the agent uploads the log file before rebooting. Because it may take some time to upload the
file, the agent waits 90 seconds for the file upload to complete and then starts the reboot delay timer. For example, if you specify a
reboot delay of three seconds, the device reboots in 93 seconds.

If the device does not reconnect to the server after the update and reboot (if applicable) complete, the device reverts to the previous
software on the device, which requires additional time.

Postrequisites

You must confirm that device is now running the new software. For more information, see Confirming Successful Software Update on
page 55.

If the Rollback Occurred alarm appears in the Alarms section of the asset dashboard, the update failed. For information about fixing
the problem, see Fixing Software Update Problems on page 67.

6. Confirming Successful Software Update

You must confirm that the device is operational after a software update and verify that it is running the new software.

Depending on the number and size of the packages in the update file, the update may take some time. You may need to refresh the
asset dashboard in your browser window periodically to see status updates.

1. Confirm that the device appears on the asset dashboard and that the Last contact time is less than or equal to the Ping rate.
The Status may temporarily show asset-missing, but it changes to Good after a few ping cycles.

2. Check the status of the action that deployed the software update package.
In the Recent Actions section of the asset dashboard, verify that the status of Package Deployed
[update_package_name] is Delivered to Agent, where update_package_name is the name of the software package
you created.

3. In the Uploaded Files section of the asset dashboard, verify that the ?/var/wra/files/default/wr_install_updates.log file appears.
It should contain INFO entries similar to the following:

Find right certificate: vendor-cert.pem
Certificate vendor-cert.pem is verified successfully
RPM package /tmp/mntdu0TB2/sys-version-1.0-r0.3.corei7_64.rpm is verified successfully
Find right certificate: vendor-cert.pem
Certificate vendor-cert.pem is verified successfully
RPM package /tmp/mntdu0TB2/tcpdump-4.6.1-r0.0.corei7_64.rpm is verified successfully
INFO: Mounting /var/wra/files/default/update-image.img at /tmp/mntdu0TB2
INFO: Installing rpm packages
INFO: A reboot delay of 0 seconds was requested by the update package.
INFO: Install completed successfully.
INFO: Exiting with return code 0

4. In the Data section of the asset dashboard, verify that the value of the system-version data item is the correct version.
5. In the Data section of the asset dashboard, click Historical.
6. In the Data Item list, select wr_install_updates.log and click Filter.
7. In the Value column of the list, verify that the RPM UPDATE entries show the expected RPMs in the update and the most recent

entry shows INFO: Exiting with return code 0.
The list should have entries similar to the following:

55| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

8. If the update includes the kernel, verify that the Updated with New Kernel alarm appears in the Alarms section of the asset
dashboard.

Postrequisites

If any of the above verification steps fail or the Rollback Occurred alarm appears in the Alarms section of the asset dashboard, see
Fixing Software Update Problems on page 67.

56| Documentation Software Update

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

6. ONBOARDING
• Using Software Update for Onboarding on page 57

1. Using Software Update for Onboarding

Onboarding updates the device after it first registers with the HDC Server.

When an HDC-enabled device configured with a valid server address boots, its HDC Agent automatically registers with the HDC
Server.

You can use the software update procedure to do any post-registration configuration of the HDC Agent and to update other software
on the device. For example, you can change the configuration of the HDC Agent using the iot-config.py script on your host
computer, create the software update file with an updated version of the HDC Agent, and create an onboarding software package
that is deployed automatically to all devices with the factory software version. To change the agent configuration to include in the
package, follow the instructions in the Example: Agent Update on page 50 section of Creating a Project Update File on page 48.

As with any software package, the onboarding software package is created on a per-model basis; you can only deploy the
onboarding software package to models for which the package is created.

To create an onboarding package, follow the same steps to create the software update file from the initial factory manifest. On the
HDC Server, create the software package that contains the update file and deploy it automatically.

Prerequisites

Before you create the onboarding software package on the server, you need the project update file you generated (see Creating a
Project Update File on page 48).

The model must be available on the HDC Server. The model is available after the first device of the model type registers with the
server. Alternatively, you can create the model on the server using the Model wizard. To create a model using the REST APIs, use the
Model object APIs.

1. Create the onboarding software package.
1. Log in to the HDC Console.
2. Click CONTENT and then select New > Package.
3. In the Name text box, type package_name , where package_name is the name of your package.
4. In the Model list, select the model to which package_name can be deployed.
5. Type a numeric value in the Version box.
You need a value in the major box, but you can leave the other boxes empty. You can use any version scheme
you want.

6. Clear Enable Package Retries and then click Next.

57| Documentation Onboarding

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

 NOTE: Package retries must be disabled to avoid repeated attempts to deploy a bad package.

2. On the Package Dependencies page, specify the software version dependency.
1. In the Select dependency list, select Data Item.
2. In the Data Item list, select system-version.
3. In the Operator list, select ==.
4. In the Value box, type the factory system version, for example, rev1.

5. Click Add and then click Next.
3. On the Package Instructions page, add an instruction to download the update file.

1. In the Select Instruction list, select Download File from Platform.

 NOTE: Depending on your browser and operating system, you may see a security warning message or a prompt to
install or update the Java plugin. Take the appropriate action based on the message you see. For example, if
you see a Security Warning dialog, select Always trust the content from this publisher and then click Run.

2. Click Browse, select update-image.img or the file name of the update file if you renamed it, and click Upload.
3. Wait for the File uploaded successfully message to appear.

4. Select Overwrite existing files.
5. Use the default settings for all other options and click Add.

4. On the Package Instructions page, add an instruction to install the update.
1. From the Select instruction list, select Execute Application.

58| Documentation Onboarding

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

2. In the Application box, type ??wr_start_update.

 NOTE: Ensure that you type the value in the Application box exactly as specified. Do not include spaces or other
characters. Otherwise, the agent does not receive the update instruction.

3. In the Arguments box, type ?update-image.img (the default update file name), or the file name of the update file if you

renamed it.

 NOTE: Ensure that you type the name of the file you uploaded when you added the Download File from Platform
instruction. Do not include spaces or additional characters in the Arguments box.

4. Click Add and then click Finish.

 CAUTION: Do not add any additional instructions to the package. Other instructions disrupt the update procedure
on the device and the software update may fail.

59| Documentation Onboarding

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

5. On the Package Confirmation page, click Finish.
The Package Manager page appears and shows your package. You are now ready to deploy the software package
manually or automatically to devices of the model type you selected.

6. Automatically deploy the package to all models running the factory software version.
1. In the list of package on the Package Manager page, locate the package you created.
You may need to filter based on the model or package name.

2. Under the Actions column, click Deploy.
3. On the Select a Deployment Type page, select Automatic Deployment and click Next.
4. On the Deployment Routing Criteria page, click Finish.
5. On the Confirmation page, confirm your settings and click Deploy.

When devices of the model type for which the onboarding software package was created register with the server, any models that
are running the system version you specified update automatically with the contents of the onboarding software package you
created.

60| Documentation Onboarding

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

7. DEVICE MANAGEMENT
• Logging in to the Device Remotely on page 61
• Rebooting Devices (OS reboot) on page 63
• Resetting to Factory Defaults on page 64

1. Logging in to the Device Remotely

You can log in securely to the device from the HDC Server.

You may want to log in remotely to a device for troubleshooting or to perform other activities on the device that are not available
directly from the HDC Server. A remote session from the HDC Console opens a secure tunnel that enables you to connect to the
device through firewalls. The HDC Agent opens the required ports on the device only for the duration of the remote session. The
connection is encrypted for additional security. Inactive sessions are automatically terminated after 15 to 30 minutes.

The HDC Agent supports telnet and SSH protocols. You can connect to the device using any client application on your local
computer that supports one of these protocols, for example, Putty.

The default agent remote session configuration is the following:

Session Name Protocol Address Port

ssh_session SSH localhost 22

telnet_session telnet localhost 23

Prerequisites

To enable the remote login capability, you must have added --with-template=feature/remote-session to your configure command
when you built your platform project. If necessary, rebuild your platform project and then redeploy your platform project or use the
software update procedure to update the device remotely. Otherwise, the Remote Sessions section is not present on the asset
dashboard on the server.

For information about building your platform project, see the following:

• Building Your IDP XT Platform Project on page 8•

• Building Your Wind River Linux Platform Project for ARM Target Devices on page 12•

• Building Your Wind River Linux Platform Project for Intel Target Devices on page 16•

You must have a Java plugin installed on your browser.

61| Documentation Device Management

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

 NOTE: Chrome does not support the plugin required to enable remote sessions. Use Firefox or Internet Explorer instead.

You need a client application that supports either SSH or telnet installed on the computer where you run your browser.

The device must be in contact with the HDC Server and the HDC Agent service must be running.

1. Log in to the HDC Console.
2. Open the asset dashboard of the device to which you want to connect.
3. In the Remote Sessions section on the right side of the dashboard, click the name of the session you want to use, for example,

ssh_session.
4. In the Remote Session window, type a description of the session (optional) and then click Start Session.

Depending on your browser and operating system, you may see a security warning message, a prompt to run a Java
application, or a prompt to install or update the Java plugin. Take the appropriate action based on the message you
see. For example, if you see a Security Warning dialog, select Always trust the content from this publisher and
then click Run.
The window updates to show the progress and status of the session connection. When the remote session is
established, the Status shows Remote connection ready. The window shows the address and port to specify in the
client program on your local computer.
If the port specified in the agent configuration is not available, the port is remapped and displayed beside the
requested port number in the Available field. In the example below, port 22 is remapped to 10000.

5. On the computer where you run your browser, use a client application to open a connection to the device using the protocol of
the remote session you started on the HDC Server.
For example, open an SSH session from the command line on a Linux host. Specify the address and port number
displayed in the Remote Access Application window. In this example, the address is 127.0.0.1 and the port is 10000.

62| Documentation Device Management

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

$ ssh root@127.0.0.1 -p 10000

6. At the password prompt, type the password of the user you used to connect to the device.
The device prompt appears and you have established a secure remote connection to the device.

Postrequisites

When you no longer need remote access, in the Remote Access Application window, click End Session.

 NOTE: Logging out from the session in the client application on your local computer does not prevent new remote sessions
from being established. You must end the session in the Remote Access Application window to prevent unauthorized
access to the device.

Related information
About Software Update on page 46

2. Rebooting Devices (OS reboot)

You can reboot a device from the HDC Console.

When a device reboot completes, the following occurs:

• The device reboots.•

• A new log file is uploaded to the HDC Server.•

1. Log in to the HDC Console.
2. Click MANAGE and then select New > Action.
3. In the Name box, type rebootAction , where rebootAction is the action name.
4. In the Category list, select Asset update actions.
5. Choose Execute an application and then click Next.
6. In the Absolute file path & name text box, type reboot.
7. Leave the File arguments text box empty, and click Next.
8. On the User Groups That Handle Edit Permissions For Action page, click Finish.
9. On the Confirm Changes To Action page, click Finish.

The Actions page appears and the new action appears in the list.

63| Documentation Device Management

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

10. To reboot a device, from the Actions list on the asset dashboard, click rebootAction .

 NOTE: Wait for any in-progress activities (such as custom actions, software update, and file download) to complete before
executing the reboot action. These activities can sometimes take some time depending on the ping rate.

When the new log file is visible on the asset dashboard, the device has finished rebooting.

3. Resetting to Factory Defaults

Factory reset returns the device to a previous version of the software that you specify when you create the original boot media.

 NOTE: Factory reset is supported only on devices that run HDC with IDP XT; devices that run HDC on Wind River Linux
without IDP XT do not support factory reset.

If a device is malfunctioning, you may want to return to a known, working software image. You initiate the factory reset from the HDC
Server.

 NOTE: Wait for any in-progress activities (such as custom actions, software update, and file download) to complete before
initiating a factory reset.

64| Documentation Device Management

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

The following shows the steps to initiate a factory reset from the server using an action. You can also use a software package that
contains only the Execute Application instruction.

To implement the same functionality using the REST APIs, use the Software Package object and the Deployment object APIs.

Prerequisites

Your boot media must contain a factory default image. If you created your boot media with a previous version of HDC, it does not
have a factory default image and the process fails. For information about creating your boot media with a factory default image, see
Deploying Your IDP XT Platform Project on page 9.

To reset the device from the HDC Server, the HDC Agent must be running on the device and the device must be connected to the
server.

1. Log in to the HDC Console.
2. Click MANAGE and then select New > Action.
3. In the Name box, type factoryResetAction , where factoryResetAction is the action name.
4. In the Category list, select Asset update actions.
5. Choose Execute an application and then click Next.
6. In the Absolute file path & name text box, type factory_reset.
7. Leave the File arguments text box empty, and click Next.
8. On the User Groups That Handle Edit Permissions For Action page, click Finish.
9. On the Confirm Changes To Action page, click Finish.

The Actions page appears and the new action appears in the list.

10. To perform the factory reset, go to the asset dashboard and from the Actions list on the right side of the page, click
factoryResetAction .

When the process completes, in the Data section of the asset dashboard, the value of the system-version data item shows that a
different version of the software is now running on the device.

Postrequisites

You must confirm that the device is running the correct version of software, based on the version scheme you use. For example, you
can check that the current version is in the list of historical values of the system-version data item.

65| Documentation Device Management

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

8. TROUBLESHOOTING
• Recovering from Connectivity Failures on page 66
• Fixing Software Update Problems on page 67

1. Recovering from Connectivity Failures

You may be able to reset a device that has lost connectivity to the HDC Server.

If the device loses connectivity after a software update or after the reboot following a software update (if specified), the HDC Agent
automatically reverts to the previous, working version of the software. The software update and recovery procedure may take some
time, and you must wait until the OTA Process Status alarm shows that the update completed or the Rollback Occurred alarm
appears. Do not disrupt the update process.

If the device loses connectivity at any other time due to issues on the device, you may be able to recover the device manually.

Prerequisites

Network connectivity must be available, and you need an SSH server running on the device, which is enabled by default on devices
running IDP XT and Wind River Linux without IDP XT.

You must also have the IP address of the device, which is available in the log file that is uploaded to the HDC Server from the device
at initial registration time. To view this log file, on the asset dashboard in the Uploaded Files section, click the file name. Look for the
entry Agent Local IP Address.

You need root permissions on the device.

1. Use an SSH client to connect to the IP address obtained in the log file and log in to the device as the root user.
2. Check if the wr-iot-agent RPM is installed on the device.

rpm -q wr-iot-agent

The query result should be similar to the following for a device that runs IDP XT:

wr-iot-agent-1.0-r0.0.corei7_64

The query result should be similar to the following for a device that runs Wind River Linux without IDP XT:

wr-iot-agent-1.0-r0.0.armv7at2_vfp_neon

3. If the wr-iot-agent RPM is not installed, copy the RPM to the device and install it manually.
1. Use SCP or another file transfer program to copy the RPM to the device.
For example, for a device that runs IDP XT, do the following:

$ scp projDir/build/wr-iot-agent/deploy-rpms/corei7_64/wr-iot-agent-10.r0.0.corei7_64.rpm \
wra@deviceIP:/tmp

For example, for a ARM target device that runs Wind River Linux without IDP XT, do the following:

$ scp projDir/build/wr-iot-agent/deploy-rpms/armv7at2_vfp_neon/wr-iot-agent-1.0-r0.0.armv7at2
_vfp_neon.rpm \
wra@deviceIP:/tmp

66| Documentation Troubleshooting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

2. Install the RPM on your device.
For example, for a device that runs IDP XT, do the following:

cd /tmp
rpm -ivh wr-iot-agent-10.r0.0.corei7_64.rpm

For example, for a ARM target device that runs Wind River Linux without IDP XT, do the following:

cd /tmp
rpm -ivh wr-iot-agent-1.0-r0.0.armv7at2_vfp_neon.rpm

4. Proceed to step 6 on page 67 to start the wr-iot-agent service.
5. Check if the wr-iot-agent service is running on the device.

systemctl status wr-iot-agent

The output should contain the following:

Active: active (running)

6. If the agent is installed, but not running, start it.

systemctl start wr-iot-agent

The device should now connect to the HDC server and you can check the asset dashboard on the HDC Console.
Depending on the ping rate, it may take a few minutes to connect.

7. Reboot the device.

reboot

 NOTE: Applications are not notified when the agent starts or restarts. You must reboot the device to ensure that
applications reregister for data telemetry, actions, and files.

When the device finishes rebooting, the device connects to the server, and a new log file appears in the Uploaded Files section of the
asset dashboard.

2. Fixing Software Update Problems

Problems can occur during the update file creation process or during the installation process on the device.

If the update causes the device to lose connectivity to the HDC Server after the update completes, the software automatically reverts
to the previous version. You must fix the software that caused the problem and create a new update file.

67| Documentation Troubleshooting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Individual RPMs may fail to install, but if the failure does not affect the connectivity to the HDC Server, the HDC Agent does not roll
back the update. You must determine the impact of the failure and take the required actions to fix the problem.

Creating the Update File Fails

The output of the wr_create_update_image.sh script indicates whether there was a problem creating the update file.

Problem Solution

The update-image.img file is not created because there
are no changed packages.

Change the sys-version.txt file to a new value
before you build the new rootfs. The location of
the file depends on the base operating
environment.

IDP XT

projDir /layers/wr-idp/sys-version/recipes-
sys-version/sys-version/files

Wind River Linux

projDir /layers/sys-version/recipes-sys-
version/sys-version/files

Execute make to rebuild the image after you
make the changes to the platform project and
update the sys-version.txt file.

The RPM for a changed package is not included in the
update-image.img file.

Rebuild any changed packages before you rebuild the
image. Execute make packageName .rebuild.

The update-image.img file contains unexpected RPMs.

Change files only in packages that you want to include
in the update. If you make a mistake after you try to
create the update file, you need to back out the
package changes and reapply them.

Updating the Device Fails

Updates can fail to install on the device, a bad update can affect services on the device, or a bad update can cause the device to lose
connectivity to the HDC Server. To diagnose the failure, you may need to log in to the device remotely.

Problem Solution

The Rollback Occurred alarm appears in the Alarms
section of the asset dashboard, which indicates that the
device rolled back to the previous software on the
device.
The alarm description shows the system version of the
update that failed to install.

Fix any RPMs in the update file that may cause
the device to lose connectivity to the HDC
server, for example, RPMs that change the
network configuration or change the HDC
Agent configuration. Follow the steps to
recreate the update file on the host, create a
new software package on the HDC server with
the new update file, and deploy the new
software package.

68| Documentation Troubleshooting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Problem Solution

Check the status of network connectivity to the
device during the update. Any disruption of
network connectivity during the update may
also cause the device to roll back, even if the
update itself does not have a problem. After
connectivity is restored, redeploy the update
package from the HDC Server.

The update process does not start after the file is
downloaded to the device, for example, there are no
new values of the wr_install_update.log data item in
the Historical Data Item Values list.
To further diagnose the problem, check for the following
problems:

Entries in the /var/log/wra.log file on the device
indicate a problem with the wr_start_update
application or the image file name you specified
in the software package on the server. Spaces
or invisible characters in the Application or
Arguments text boxes can cause this type of
problem.

On the asset dashboard, the wra_file_request
data item in the Data section of the asset
dashboard shows the wrong file name
downloaded to the device.

Recreate the update package on the HDC Server with
the correct file, and ensure that the values in the
Application and Arguments text boxes are valid.
Ensure that you clear package retries. Deploy the new
update package from the HDC Server.

Values of the wr_install_update.log data item in the
Historical Data Item Values list show problems installing
unsigned packages.

If your device runs IDP XT with the wr-srm layer enabled,
recreate the update file again and specify the signing
option. Recreate the update package on the HDC
Server with the new update file and deploy the new
package.

The update completes successfully, but the device does
not function as expected.

The update file is only valid for updates based on the
initial project manifest.

If the update fails without a rollback and you need to deploy it again, you may need to cancel the previous deployment as follows:

1. On the HDC Console, click CONTENT and then click View packages that are deployed or in progress.

2. On the Package Deployment Manager page, locate your package.

3. If the Status column shows at least one package in progress, you can cancel the deployment. Note that this cancels
in-progress deployments to all devices receiving this package.

4. Under the Actions column, click Cancel.

5. When the number of in progress packages is zero, all deployments have been canceled. This can take some time and
you may need to refresh the page to update the status.

69| Documentation Troubleshooting

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

9. REFERENCES
• wra-util on page 70
• iot-config.py on page 71
• wr_create_update_image.sh on page 73

1. wra-util

Displays configuration and status information on the device.

Name

wra-util

Synopsis

wra-util --option

Description

Displays information about the HDC Agent configuration running on the device.

 NOTE: You must run this command on the device as the wra user. You can log in to the terminal session with the wra
username and password, or you can use sudo to execute the command as follows:.

sudo -u wra wra-util --show

Options

show

Displays information about the HDC Agent configuration and status including the following:

• IP address of the device•

• model and serial number•

• host name and port•

70| Documentation References

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Example

wra-util --show
Showing utility

============================ WindRiver Agent status ==============
 Agent Running Configuration:

 Model No : MYModel
 Serial No : 004048000001
 Host : myservername.com
 Port : 443
 Server validation : [Off]
 Ping-rate : 5 s 0 us
 Queue Size : 1048576 bytes
 Registration status : Registered
 On-boarding status : NOT ONBOARDED
 Agent Local IP Address : 192.168.53.189
 On-boarding path : /var/wra/files/default/config
 logfile path/name : /var/wra/files/default/wra.log
 Agent status : WRA_RUNNING
 Last Cloud contact time : 10/06/15 01:50:23 PM (0 min 2 s 617713 us ago)
 Network Status : [Ok]

2. iot-config.py

The iot-config.py script enables you to specify HDC-specific configuration information before building the target image.

Execute the iot-config.py script after the configure command and before the make command to fully configure the HDC Agent in the
final build image. You must run the script from your platform project directory (projDir).

You can run the iot-config.py script multiple times within the same platform project directory to create different images that have
different HDC Server settings. Each time you run the script, the new settings replace the previous settings; none of the existing
settings are preserved. After you rerun make, only packages that reference the changed settings are rebuilt.

For more information on the iot-config.py script, change to the directory that contains the script (see the examples below) and
execute the following:

$ pydoc iot-config

-h, --help

Displays a help message and exits.

-s "string", --string="string"

Specifies a comma-separated string of key:value pairs, as follows:

• A key can be the following (all lower case):•

model_number

model type of the device

71| Documentation References

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

ping_rate

ping rate in milliseconds between the HDC Server and the agent

default value: 5000

A ping rate of less than 5000 milliseconds is not valid and will be reset at build time to the default (5000).

proxy_address

IP address of the proxy server through which to connect the device to the HDC Server

proxy_password

password of the proxy server

proxy_port

port number of the proxy server

default value: 3128

proxy_protocol

protocol to use to connect to the proxy server; valid values are none, http, and socks

proxy_username

user name of the proxy server

queue_size

size in bytes of the agent request queue

default value: 1048576 (1 MiB)

serial_number

the serial number of the device

default value: the MAC address of the device

serial_number_prefix

the prefix to add to the serial number

server_address

URL of the HDC Server

server_port

server port of the HDC Server

default value: 443

• The value can be any string but cannot contain commas or line breaks.•

Validation is not performed on the key :value pairs when you execute the iot-config.py script.

-p, --password password

Specifies a password for the root user.

-r, --salt saltValue

(Optional) Use salting to encrypt the root password. If not specified, salting is not used.

-c, --clean

Removes all key:value pairs previously specified.

72| Documentation References

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

Example - IDP XT

$ cd projDir
$?layers/wr-idp/wr-iot/scripts/iot-config.py \
-s "server_address:windriver.axeda.com,model_number:IDP-HDC"

Example - Wind River Linux

$ cd projDir
$?layers/wr-iot/scripts/iot-config.py \
-s "server_address:windriver.axeda.com,model_number:WRLX-HDC"

3. wr_create_update_image.sh

Creates an update file to update software on a running device.

wr_create_update_image.sh

Synopsis

wr_create_update_image.sh initialPackageManifest projDir \
newVersion noreboot|reboot signing|nosiging [rebootDelay]

 NOTE: The signing option is only valid when creating update files for devices running IDP XT.

Parameters

initialPackageManifest

The original package manifest to compare the current project against.

projDir

The directory name of the updated project.

newVersion

The updated version of the project to update.

73| Documentation References

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

noreboot|reboot

Specifies whether to reboot the device after applying the update.

nosigning|signing

Applies to IDP XT only.

Specifies whether to sign the RPM packages in the update. For projects with wr-srm enabled (the default), specify signing.

rebootDelay

(Optional) The time in seconds to wait before rebooting the device. By default, the device reboots immediately. This setting has
no effect unless reboot is specified.

Example - IDP XT

The following shows how to create an update package using the init_build_manifest file as the original package list, the current
directory as the project directory, the sys-version.txt file that contains the version of the newly built rootfs, no reboot required, and
with RPM signing.

$./wr_create_update_image.sh init_build_manifest $PWD \
export/dist/etc/sys-version.txt noreboot signing

Example - Wind River Linux

The following shows how to create an update package using the init_build_manifest file as the original package list, the current
directory as the project directory, the sys-version.txt file that contains the version of the newly built rootfs and specifies that
rebooting the device is required.

$./wr_create_update_image.sh init_build_manifest $PWD \
export/dist/etc/sys-version.txt reboot

74| Documentation References

Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2

	Wind River Helix Device Cloud for Wind River Linux and IDP XT Programmer's Guide, 1.2
	Helix Device Cloud Overview
	Introduction to Helix Device Cloud
	Where to Find Information

	Building and Booting
	About the wrenv.sh Script
	About Building and Booting
	Building and Booting HDC for IDP XT
	Building and Booting HDC for Wind River Linux

	Application Development
	About HDC Applications
	HDC Agent APIs
	About Data Telemetry
	Sending Data to the HDC Server
	Receiving Data from the HDC Server
	Sending Alarms to the HDC Server
	Sending Events to the HDC Server
	Receiving Actions from the HDC Server
	Receiving Files from the HDC Server
	Sending Files to the HDC Server

	Software Update
	About Software Update
	Creating a Project Manifest
	Creating a Project Update File
	Creating the Software Update Package
	Deploying the Software Update Package Manually
	Confirming Successful Software Update

	Onboarding
	Using Software Update for Onboarding

	Device Management
	Logging in to the Device Remotely
	Rebooting Devices (OS reboot)
	Resetting to Factory Defaults

	Troubleshooting
	Recovering from Connectivity Failures
	Fixing Software Update Problems

	References
	wra-util
	iot-config.py
	wr_create_update_image.sh

