

Copyright Notice
Copyright © 2022 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the
prior written permission of Wind River Systems, Inc.

Wind River, Simics, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc. Helix, Pulsar, Rocket,
Titanium Cloud, Titanium Control, Titanium Core, Titanium Edge, Titanium Edge SX, Titanium Server, and the Wind River logo
are trademarks of Wind River Systems, Inc. Any third-party trademarks referenced are the property of their respective owners.
For further information regarding Wind River trademarks, please see:

www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant notices (if any) are provided for your
product on the Wind River download and installation portals:

https://delivers.windriver.com/

https://windshare.usa.windriver.com/

Wind River may refer to third-party documentation by listing publications or providing links to third-party websites for
informational purposes. Wind River accepts no responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.
Toll free (U.S.A.): +1-800-545-WIND
Telephone: +1-510-748-4100
Facsimile: +1-510-749-2010

For additional contact information, see the Wind River website:
www.windriver.com
For information on how to contact Customer Support, see:

www.windriver.com/support

HDC Getting Started Part 2: A Deeper look at the Demo — Video, 12:25

29 January 2019

https://www.windriver.com/company/terms/trademark.html
https://delivers.windriver.com/
https://windshare.usa.windriver.com/
https://www.windriver.com/
https://www.windriver.com/support/

HDC Getting Started Part 2: A Deeper look at the Demo — Video, 12:25

1. HDC GETTING STARTED PART 2: A DEEPER LOOK AT THE

DEMO

— VIDEO, 12:25

Published on 6 October 2015

Transcript

Time
(mm:ss)

From: 00:12

From: 01:03

From: 02:02

From: 03:05

From: 04:04

Narration

Ok, in the previous session we went through a quick tour of showing how you could bring up a
device, and then start sending data to the cloud. | wanted to show that as a very simple
exercise, something that could be accomplished in just a couple of minutes, and | provided a
number of pre-built pieces in order to enable that. So | did provide a device platform build, an
IDP build, running in a VM so that we could just simply use that, before we went through the
process of building a platform. | also implemented the data definitions or the data defining in
lua scripts, but we'll also show that the basic standard APl is a C API, and I'll show you some of
the setup that was necessary for that. So, let's take a look now at what | did in order to build
this platform

and to prepare it so that we could do that quick demo. So, let's take a look now down in my
"blds" directory, and you'll notice in the blds directory, | have a "p5" directory which is where |
actually did the platform build, but over the "cfgs" directory, you'll notice that that's where |
keep some scripts so that | can reproduce a platform build, so if | go over and look at that
directory, and let's take a look at the scripts that are there, and you'll notice that | have the p5
script, and the main thing to notice about the platform builds, is that you need to include "--
with-layer=wr-iot". The wr-iot layer brings in the agent software that runs on the device or on
the gateway that communicates with the cloud platform. By enabling this capability on a target
device, an IDP target device, then you have that communication up into the cloud,

and you'll notice that | simply source some of my base information. This is just standard stuff
that | typically turn on for all my builds, and saves me the typing in each additional build, but |
can add additional builds and | can go back and reproduce a build simply by saving them in
scripts. But once you have configured a project, and I'm not going to talk too much about the
configure and make of projects, we do have training material on IDP platform and builds with
including layers and packages, and all that's covered in some of our standard training material,
so | just want to focus entirely on the Helix Device Cloud in this series of training videos. But
let's do take a look at the additional script that's necessary, because once you have completed
your configure, before you would run make, you do need to also run the "iot-config" script, and
if you'll notice here I've

also saved this as a script that | can run, and so | run the iot-config script. This is the config
script that's provided with the development tools, and I've simply provided this script, just to
save myself some additional typing as well, but here's how you would define which sandbox
you want to connect to, your model type, your serial number, and you can also include like a
serial number prefix. There are a number of other variables that you could set, but these are
typically the base ones that you would want to set. So, you would run this script, and then after
completing running this script, you would simply run "make". And then once your project is
built, you'll have output that looks like this, and then you can deploy it to a USB stick, and you
can insert that USB stick into your device and boot it up, and this is all, like | said, covered more
in our other training courses.

In the this series, I'm going to assume that you have a device platform built, and that you're
able to bring it up. So, now let's take a look though at some of the other pieces that were used
so that we could bring up that device and start posting data, and so now if you look down in

1| Documentation HDC Getting Started Part 2: A Deeper look at the Demo — Video, 12:25

HDC Getting Started Part 2: A Deeper look at the Demo — Video, 12:25

the code directory, you'll see that | have a number of different pieces here but first, let's take a
look at some of the "lua_setup" stuff. In the lua_setup, you'll notice that there's a number of
different versions of tarballs here, and these are packages that have been prepared that can be
deployed to a target, and simply by modifying the things in this directory, | can then make some
changes, and then upload those into the platform, and deploy it to my target. Let's take a look
down in the "scripts" directory. This is the lua scripts that

we used in the previous example, and specifically the postdata script, and you can see here it's
a very simple script that simply defines a telemetry data type, and you can see that you can
simply pass in on the command line a name, a data type, and a value, and then it'll post that
data up to the cloud platform, and that's all that's really necessary in order to do that. Now, of

From: 05:00 course I've done this in a lua script, and the standard APl is a C API. So let's go look at how that
would appear in a standard C application. And you'll notice that over here, in the "build"
directory, you'll see some examples. These are standard examples that you might want to take
a look at. Let me bring this up in an editor, and if you look at at the data, some sample code
written in C, and this does essentially the same thing that the little lua

script did as well, but this is defining more data types. There are data types for Booleans, for
floating point, doubles, there are integers and strings, and so you can see going through this
example code that they're posting various different types, but the APl is very similar to what we
showed in the lua script. You simply post it, but before you can post it you either set values you

From: 06:00 can do sets and gets on these values, and then but you create the object first, do the sets and
gets, and post, and this is the how simple the APl is actually to use, and in this case you could
simply go and build these applications, so let's go down and into this data directory, and you
can see that | could do. Well, it's already built, but let me and then build it again, and you can
see that it builds that quickly, and it'll produce an output binary file called

simple_tm_test, and then you can run this on your target, just as | ran the lua scripts, and in the
previous example and this will register and post data up into the cloud as well. I've provided
the makefiles and the sample code right here. In order to do that though, you do need to
source the build environment, which | didn't show earlier, but in order to do that, there is an

From: 07:02 environment script that sets up all the variables, and then you can run this, and | had obviously
already done that in this example but, now you can run the make scripts. | showed the example
of using a lua script. In order to enable lua, there is simply a module that needs to be provided
and that module needs to be installed in the lua path, and so again, building this is just like
building any other application. You will run it like

that, and it will generate a wra shared library, and that needs to be installed in the lua path, and
also I've provided another utility which we'll talk more about later. doit and sudoit. These are
simply some helper utilities that allow you to run scripts when you invoke them from the cloud
platform. We'll talk more about that in another session. Essentially, these are applications as
well, just like the other example applications. They simply invoke a shell script, once you have
called the application. These would register themselves as well with your base platform. Ok, so
once you have compiled and built your applications. Once you have built your platform project,
deployed it onto a USB stick, and booted up your project as we did in a virtual machine, or if
you're booting up a real gateway device, then you'll be able to connect to it through Ethernet
or through Wi-Fi, and then you can actually, you know copy

From: 08:00

down files to it, and then run those scripts. Now of course, application development is typically
not going to be running utilities from the command line. You're going to have an application
that's either reading a sensor, it's reading some data files, it's reading values out of a database,
or its receiving data over some kind of a communication link to a remote device, but that is
really more application-specific, and so the examples that we'll show here in the getting started
are really trivial, or very simple, just showing how you can read some data. These would simply
be put down onto your target, these application components, and then you can use them from
the cloud and we'll show that in the next session. Ok, now what I'd like for you to try to do is
reproduce these steps. I'd like you to go through and create your platform project, configure it,
run the iot_config script to define your variables for your

From: 09:04

2| Documentation HDC Getting Started Part 2: A Deeper look at the Demo — Video, 12:25

HDC Getting Started Part 2: A Deeper look at the Demo — Video, 12:25

connecting to your sandbox, then make the project, and then make the export SDK, install the
export SDK, and then go through and make and build the example code that I've shown, and if
you can accomplish that and then be able to bring up your device, we've arrived at a point
where you're able to to accomplish quite a bit, so let's try this, and then we'll move on to the
next section. Ok, so now let's review the steps necessary to reproduce the example. First,
you're going to want to create a platform project and you're going to have to do a configure
script in order to do that. Here's an example of a configure that will build the project as
needed. You'll notice the main thing to include is the layer "wr-iot". Some of these are the
things are optional, such as feature remote sessions, but you could also include other packages
that you may want to include in your build.

From: 10:06

Then you're going to want to run the iot-config script. This script allows the agent to be
configured to establish communication to the server, and you'll specify a server address, a
model number, serial number, and any prefix if you, and other options are available as well. You
can find that in the the programmer's guide and the user's guide for the IDP platform project.
And then after you have configured that, then you're going to want to run "make" and "make
export-sdk". This will compile all of the tools and the images and output the tools by installing
the SDK. You'll see it and it will install and /opt/windriver if you accept the defaults when you
run the script. And then try building some of the sample code. You can go down into the /blds/
code/examples directory. Source the environment script that sets up your cross compile
environment,

From: 11:04

and then go down into one of the subdirectories and type make and see if you can successfully
From: 12:04 compile the example code, and then once you have achieved this, we're ready to move on into
the next section.

Contact: nlyons
Content ID: 045829

template('WindRiver/function/JS/wrConditionalContent');

3| Documentation HDC Getting Started Part 2: A Deeper look at the Demo — Video, 12:25

	HDC Getting Started Part 2: A Deeper look at the Demo — Video, 12:25

