
WIND RIVER HELIX DEVICE
CLOUD AGENT
PROGRAMMER'S GUIDE, 2.3

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Copyright Notice

Copyright © 2022 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the
prior written permission of Wind River Systems, Inc.

Wind River, Simics, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc. Helix, Pulsar, Rocket,
Titanium Cloud, Titanium Control, Titanium Core, Titanium Edge, Titanium Edge SX, Titanium Server, and the Wind River logo
are trademarks of Wind River Systems, Inc. Any third-party trademarks referenced are the property of their respective owners.
For further information regarding Wind River trademarks, please see:

www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant notices (if any) are provided for your
product on the Wind River download and installation portals:

https://delivers.windriver.com/

https://windshare.usa.windriver.com/

Wind River may refer to third-party documentation by listing publications or providing links to third-party websites for
informational purposes. Wind River accepts no responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River

500 Wind River Way

Alameda, CA 94501-1153

U.S.A.

Toll free (U.S.A.): +1-800-545-WIND

Telephone: +1-510-748-4100

Facsimile: +1-510-749-2010

For additional contact information, see the Wind River website:

www.windriver.com

For information on how to contact Customer Support, see:

www.windriver.com/support

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

27 January 2019

https://www.windriver.com/company/terms/trademark.html
https://delivers.windriver.com/
https://windshare.usa.windriver.com/
https://www.windriver.com/
https://www.windriver.com/support/


1. WIND RIVER HELIX DEVICE CLOUD AGENT
PROGRAMMER'S GUIDE, 2.3

1| Documentation Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



2. HELIX DEVICE CLOUD OVERVIEW
• Introduction to Helix Device Cloud on page 2
• Helix Device Cloud Agent on page 4
• Where to Find Information on page 5

1. Introduction to Helix Device Cloud

?The Wind River Helix Device Cloud (HDC) agent enables distributed management of devices from cloud-based applications.

Helix Device Cloud includes components for device-side and cloud-side support. The agent on the device enables cloud connectivity
to facilitate data capture, rules-based data analysis and response, and configuration. The cloud supports RESTful APIs to enable you
to build end-to-end IoT solutions and a browser-based management console to manage devices.

Devices run the agent to enable applications to securely transmit telemetry to the server and create custom device management
actions. The agent provides basic device management and configuration. For supported operating systems, the device also includes
the ?MRAA sensor library to simplify sensor integration into your application.

The management console displays the telemetry received from the device and provides an interface to execute the list of custom
actions the application implements on the device. The management console provides the following:

• rules and alerts that can be triggered based on telemetry and device properties•

• package management and deployment for remote software updates•

• remote login to devices•

• file transfer between the device and the server•

The administration utility provides the following:

• user account administration to control access and permissions to administrative functions•

The Helix Device Cloud agent enables you to build IoT applications using the following operating systems:

• Wind River Linux 7.0 and Wind River Linux 8.0•

• Wind River Intelligent Device Platform XT•

• Wind River VxWorks 7•

• Windows 7 and Windows 10 32-bit•

• Ubuntu 16.04•

To successfully build applications for the Helix Device Cloud agent on the device, you need to know how to use the supported
operating systems. To find the prerequisite information about the Wind River operating environments, see Where to Find Information
on page 5.

The following figure shows the components in the end-to-end IoT solution and the basic device-side software architecture. Wind
River Host Tools enable you to develop your application for Wind River operating systems on your host computer. The sensor agent is
only available on Wind River Linux and IDP XT.

2| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Connectivity and Registration

The device initiates the connection with the server and sends device registration information, capabilities, and configuration to the
server. The configuration information enables two-way authentication between the server and the device. The server response
provides acknowledgment of the device to a specified tenant account. Devices can reregister to advertise updated device
capabilities.

The agent on the device communicates with the server using the DXL (Data Exchange Layer) publish and subscribe message protocol
secured with TLS 1.2.

Firewall Exceptions

To enable connectivity between the device and server, ensure that you open the outbound port 443 on your network if you do not
user a proxy server.

Proxy Server Support

The agent can connect to the server through a proxy server. You configure the proxy settings after you boot your device or optionally,
at installation time on Windows. For more information, see the following:

Connecting Your Wind River Linux and IDP XT Device to the Server
Connecting Your Ubuntu Device to the Server
Installing the HDC Agent on Windows
Connecting Your Windows Device to the Server

Certificates and Credentials

You receive the following credentials for Helix Device Cloud:

• your tenant administrator user name and password•

You need this information to log in to the following:

3| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



the management console at https://www.helixdevicecloud.com
the administration utility at https://admin.helixdevicecloud.com

For more information, see Wind River Helix Device Cloud Getting Started.

2. Helix Device Cloud Agent

The agent services requests from user applications and the server.

Each device runs a single instance of the agent, which can handle requests from multiple applications.

Applications use the agent APIs to do the following:

• create telemetry objects to transmit telemetry data from the device to the server•

• create actions to provide a set of custom device management actions that the server can execute on the device•

Each application provides its own telemetry and actions.

Agent Services on Linux

The following services on Ubuntu, Wind River Linux, and Wind River IDP XT, which are controlled by the systemd initialization system,
provide connectivity and basic device management functionality:

• iot-device-manager•

• iot•

• iot-ccg•

• iot-mux•

• mosquitto•

Use the iot-control command to start, stop, restart, and query the status of the services. On the command-line, type iot-control --help
for more information.

Use the journalctl -u serviceName  command to view log files for each service.

You may need superuser privileges to run the commands.

For more information about systemd, see https://www.freedesktop.org/wiki/Software/systemd/.

Agent Services on Windows

The following services, which are managed from the Services Management Console (the Services program), provide connectivity and
basic device management functionality:

• Internet of Things Core Service•

• Internet of Things Device Manager•

• Internet of Things Connection Gateway•

• Mosquitto Broker•

Use the iot-control command from a Command Prompt window to start, stop, restart, and query the status of the Internet of Things
services. On the command-line, type iot-control --help for more information.

Log files are available in the C:\ProgramData\Wind River Systems\Helix Device Cloud folder.

4| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

https://www.helixdevicecloud.com
https://admin.helixdevicecloud.com
https://www.freedesktop.org/wiki/Software/systemd/


Agent Tasks on VxWorks 7

The following tasks provide connectivity and basic device management functionality:

• tCcgBroker•

• thdcAgent•

• thdcDeviceMgr•

• tMosquitto•

To restart the services, you must reboot the device.

3. Where to Find Information

Documentation is available through the Wind River Knowledge Library.

The following documentation is available:

Wind River Helix Device Cloud Documentation

Wind River Helix Device Cloud Getting Started

Provides instructions to install the HDC agent on a host computer and information about getting started with the platform.

Wind River Helix Device Cloud Release Notes

?Provides general product information about Helix Device Cloud, changes in this release, usage caveats, and known problems.

Wind River Helix Device Cloud Management Console User's Guide

Provides information about performing device and platform management tasks.

Wind River Helix Device Cloud Administration Utility User's Guide

Provides information about performing platform administration tasks.

Wind River Helix Device Cloud Platform Programmer's Guide

Provides information about writing Web-based applications for Helix Device Cloud.

Wind River Helix Device Cloud Interactive REST API Reference

Provides reference information for the platform REST API and an environment to explore the APIs.

Wind River Helix Device Cloud Agent Programmer's Guide

Provides instructions for configuring devices to run the agent and to write Helix Device Cloud applications.

Wind River Helix Device Cloud Agent Configuration and Build Guide

Provides instructions to build images that include the agent for target devices that run Wind River operating systems.

Wind River Helix Device Cloud Troubleshooting Guide

Provides information to help resolve issues with Helix Device Cloud.

Wind River Helix Device Cloud Agent API Reference

Provides reference information for the agent API.

5| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Wind River Linux Documentation

The following documents are available for both Wind River Linux 7.0 and 8.0:

?Wind River Linux Getting Started Guide

?Provides instructions for creating, modifying, deploying, and debugging platform and application projects using the command-
line and Workbench.

Wind River Linux Platform Developer's Guide

Provides information about ?command-line instructions for configuring, building, and developing platform projects as well as
detailed information on the development environment and build system.

?Wind River Linux Getting Started Workbench Tutorials

?Provides procedures and examples for using Workbench to configure, build, and debug Wind River Linux application, platform,
and kernel module projects.

Wind River Linux User Space Developer's Guide

Provides information about using the Wind River Linux SDK to develop Linux user space applications.

Wind River Intelligent Device Platform XT

The following documents are available for Wind River IDP XT:

Wind River Linux Intelligent Device Platform XT Programmer's Guide, 3.1

?Provides instructions for installing and configuring IDP XT and modifying it for your specific requirements.

?Wind River Intelligent Device Platform XT Security Guide, 3.1

Provides guidance on performing a security analysis and matching IDP XT capabilities with assessed needs.

Wind River Intelligent Device Platform XT Release Notes, 3.1

?Provides general product information, changes in this release, usage caveats, and known problems.

VxWorks 7

The following documents are available for VxWorks 7:

VxWorks 7 Getting Started Guide

Provides information about getting started with development on VxWorks 7.

VxWorks 7 Release Notes

Provides general product information, changes in the VxWorks 7 components, and known problems.

VxWorks 7 Configuration and Build Guide

Provides information about instructions for configuring, building, and developing platform projects as well as detailed
information on the development environment and build system.

6| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Accessing Documentation

To access the Helix Device Cloud documentation on the Knowledge Library (http://knowledge.windriver.com), select Products >
Internet of Things > Helix Device Cloud 2.

To access the interactive REST API Reference, go to https://www.helixdevicecloud.com, click the Help button in the upper-right
corner, and select REST API Reference.

7| Documentation Helix Device Cloud Overview

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

https://windriver-staging.zoominsoftware.io/bundle/Wind_River_Helix_Device_Cloud_Agent_Programmers_Guide_2.3_1/page/
https://www.helixdevicecloud.com


3. APPLICATION DEVELOPMENT
• Helix Device Cloud Applications on page 8
• Registering Your Application with the Agent on page 11
• About Telemetry on page 13
• Sending Telemetry Data to the Server on page 14
• Sending Location Data to the Server on page 16
• About Custom Actions on page 21
• Receiving Actions from the Server on page 22
• Python Bindings on page 24

1. Helix Device Cloud Applications

?To transmit and receive information between the device and the server, you need to write an application to run on the device that
communicates with the server through the agent.

The agent provides C APIs to enable you to create applications. You can also write applications using languages supported through
language bindings. For more information, see Python Bindings on page 24.

On Wind River Linux and IDP XT, the device also provides the open source MRAA I/O library to simplify sensor data collection. For
more information about the library, see http://iotdk.intel.com.

API Header Files

On Windows and Ubuntu, the host (development computer) and device may or may not be the same computer.

On Windows, you must select the Development component at installation time to install the header and library files.

Header files for each supported operating system are located as follows:

Operating System Location on Host Location on Device

Wind River Linux and IDP XT

Agent

projDir /build/iot/git/src/api/
public/iot.h

MRAA I/O library

projDir /bitbake_build/tmp/
sysroots/boardName /usr/
include/mraa.h
projDir /bitbake_build/tmp/
sysroots/boardName /usr/
include/mraa

after building the platform project

Agent

/usr/include/iot.h if the
platform project was built with
the --with-template=feature/
self-hosted template and --with-
package=iot-dev package

VxWorks 7
installDir /vxworks-7/pkgs/app/hdc-
releaseNum /wr-iot/src/api/public/
iot.h

N/A

8| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

http://iotdk.intel.com


Operating System Location on Host Location on Device

Windows
installDir \include\iot.h if you select
the Development component at
installation time

installDir \include\iot.h if you select
the Development component at
installation time

Ubuntu /usr/include/iot.h /usr/include/iot.h

Libraries

Link your application against the agent library for your operating system and include the library on your device at run time as follows:

Operating System Compile-time Library Run-time Library

Wind River Linux and IDP XT

Agent

libiot.so

MRAA I/O library

libmraa.so

Agent

libiot.so

MRAA I/O library

libmraa.so

Windows iot.lib iot.dll

Ubuntu libiot.so libiot.so

VxWorks 7 Not applicable. Not applicable.

Source Code

Source code is provided for a subset of operating systems as follows:

Operating System Location

Wind River Linux and IDP XT
projDir /build/iot/git after you build the platform project
on your host computer

VxWorks 7
installDir /vxworks-7/pkgs/app/hdc-releaseNum  after
you install VxWorks 7

File Transfer Support

Your application can access files sent from the server to the device and can add files to specified directories to enable the server to
retrieve them.

By default, the agent searches for files to retrieve in a predefined, operating system-specific directory. You can add to the list of
directories the agent searches and configure the agent to leave the files in the directory instead of deleting them after retrieving the
files successfully. For more information, see Agent Configuration on page 37.

9| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



To enable the server to retrieve files from your application, put the files in the predefined, operating system-specific directory or the
additional directories, if configured. When the server runs the Retrieve Files action, the agent sends all files (subdirectories are not
included) in the directories to the server and then, by default, deletes the files from the directory.

The server is not notified when new files are added to the directory. Your application may need specific permissions to write to the
directory, and you must ensure that all files have read permission enabled for all users.

The default directory locations are as follows:

Operating System Location

Wind River Linux and IDP XT
Ubuntu

/var/lib/iot/upload

Windows C:\ProgramData\Wind River Systems\Helix Device Cloud\upload

To receive files from the server, check the predefined, operating system-specific directory periodically in your application. Your
application must know in advance what files to check for, and the agent does not notify applications when new files are added to the
directory. You can write a custom action that the server can run to notify your application that it has sent files to the device. If the
server downloads a file with the same name as an existing file in the directory, the existing file is overwritten.

The directory locations are as follows:

Operating System Location

Wind River Linux and IDP XT
Ubuntu

/var/lib/iot/download

Windows C:\ProgramData\Wind River Systems\Helix Device Cloud\download

Application Development on Wind River Linux and IDP XT

You need to write an application that runs in Linux user space. You must ensure that your application is compatible with any security
features enabled on the device.

To build your application in the platform project directory you created, you need to write a recipe file to compile it, create an RPM,
and then add it to the rootfs using a layer. When you build the rootfs, your application is included in the image you use to boot the
device. During development, you can include your application in the projDir /layers/local directory. Once you are ready to release
your application, you need to create your own layer. For more information, see the following:

Wind River Linux Developer's Guide, 7.0: Customizing the Platform
Wind River Linux Developer's Guide, 8.0: Customizing the Platform

You can also build applications using the Wind River Linux SDK you receive from a platform developer.

To install your application on the device, you can do one of the following:

• If you include your application in the rootfs in your own layer, follow the procedure to deploy the images to your boot media•
and boot your board. For instructions, see the following:

Deploying Your Wind River Linux Platform Project for Intel Target Devices
Deploying Your Wind River Linux Platform Project to an ARM Target Device
Deploying Your Wind River IDP XT Platform Project

10| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

https://knowledge.windriver.com/Content_Lookup?id=045558
https://knowledge.windriver.com/Content_Lookup?id=046008


• Install the application binary executable or the RPM using the software update process. During the test and modification•
iterations of developing your application, modify your package to use new versions of your files. For more information, see
Software Update on page 31.

If the underlying operating system is IDP XT and you have the wr-srm layer enabled (the default), you must sign the RPM first.

For more information about Linux applications, recipes, layers, using an SDK, and deploying an application, see the following:

Wind River Linux Platform Developer's Guide, 7.0
Wind River Linux Platform Developer's Guide, 8.0
Wind River Linux User Space Developer's Guide, 8.0
Wind River Linux User Space Developer's Guide, 7.0

For more information about running applications under IDP XT with security features enabled, see the Wind River Intelligent Device
Platform XT Programmer's Guide.

Application Development on Windows

You need to write an application that runs in user space. Visual Studio is the recommended development environment. The agent was
verified using Visual Studio 2015; however, newer releases should also work.

For applications written in any language, if you did not add the Helix Device Cloud installation folder to the system path either during
installation or manually afterward, the iot.dll library and the application must be in the same folder to run the application successfully.

When you specify a value for an 64-bit integer parameter, you must cast it as a 64-bit integer as shown in the following example:

iot_telemetry_publish(temperature, NULL, 0u, IOT_TYPE_INT64, (iot_int64_t)12 );

This restriction applies to any agent API that accepts integer values.

Application Development on VxWorks 7

You need to write an application that runs in kernel space. For information about writing and building applications for VxWorks 7, see
the following:

go to VxWorks 7 Getting Started and select Tutorials
VxWorks 7 Programmer's Guide

Application Development on Ubuntu

You need to write an application that runs in user space and you must install make, gcc, and glibc on your development computer.
Other C compilers should also work.

2. Registering Your Application with the Agent

You must register your application with the agent to use the rest of the agent application functions.

?You must have a valid agent handle to use when you register telemetry and actions.

Optionally, you can register a callback function to receive the agent log messages generated using the IOT_LOG macro. You can also
use the IOT_LOG macro to generate your own application log messages. Your log handler receives all the logs in your log handler,
which can help you debug your application.

11| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

https://knowledge.windriver.com/Content_Lookup?id=045558
https://knowledge.windriver.com/Content_Lookup?id=046008
https://knowledge.windriver.com/Content_Lookup?id=046013
https://knowledge.windriver.com/Content_Lookup?id=045560
https://knowledge.windriver.com/Content_Lookup?id=046236
https://knowledge.windriver.com/Content_Lookup?id=046236
https://knowledge.windriver.com/?cid=vx7_getting_started
https://knowledge.windriver.com/Content_Lookup?id=044250


Procedure

1. Retrieve the agent handle.

Specify a name for the application in the id parameter. Specify NULL for the app_path parameter and zero for the flags parameter.

?iot_t *agentHandle;
agentHandle = iot_initialize("myApp", NULL, 0);

2. Optionally, register a callback to receive log messages.
1. Write the log handler function.

Use the following function signature:

void log_handler( iot_log_level_t log_level, iot_log_source_t *log_source, const char *messa
ge, void *user_data )

2. Register the callback function.

iot_log_callback_set(agentHandle, &amp;log_handler, NULL );

3. Connect the application to the agent.

Specify the value returned from the iot_initialize function for the handle parameter and the time in milliseconds to wait for a
successful connection.

Specify zero for the max_time_out parameter to wait indefinitely for the agent to connect.

result = ?iot_connect(agentHandle, 0);

The application blocks until the agent successfully connects to the server at least once.

You are now ready to register actions and telemetry with the agent.

Example: Basic Application Initialization

static iot_t *initialize( void )
{
    iot_status_t result = IOT_STATUS_FAILURE;

    iot_t  *agentHandle = iot_initialize("appName", NULL, 0u);
    
    if (agentHandle) 
        {
        result = iot_connect(agentHandle, NULL);

        if (result == IOT_STATUS_SUCCESS) {
            /* Continue with application initialization
               Register actions and metrics as required.
            */
        }
        if (result != IOT_STATUS_SUCCESS)

12| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



        {
            fprintf( stderr, "Error connecting to IoT service: %s\n", iot_error( result ) );
        }
    }
    else
    {
        fprintf( stderr, "Failed to retrieve agent handle\n" );

    return agentHandle;
}

Postrequisites

When your application terminates, call the iot_disconnect and iot_terminate functions to disconnect your application from the agent
and free the associated memory.

3. About Telemetry

Telemetry is device-specific data that the application collects and publishes to the agent for transmission to the server.

?To transmit telemetry data to the server, you register telemetry objects with the agent. The agent supports 255 or fewer telemetry
objects per device, subject to memory constraints on the device. Valid data types for telemetry metrics are Boolean, float32, float64,
int32, int64, int16, int8, uint8, uint16, uint32, uint64, string, and raw.

For int64 data types the valid range is 9007199254740991 through -9007199254740991.

For uint64 data types, the maximum value is 9007199254740991 and larger sample values may appear as negative numbers on the
server when viewed on the management console or retrieved using the REST APIs.

When the agent transmits the telemetry to the server, it is visible on the management console based on the application name you
registered with the agent in the iot_initialize function.

When the application publishes a telemetry sample to the agent, the agent queues the sample for transmission. The agent queue size
is fixed, and the queue size is not configurable.

The agent collects a minimum number of telemetry samples before transmitting the samples to the server. The agent also limits the
maximum number of samples to send in a single transmission. The agent sends samples at intervals of one second.

By default, the agent specifies the current time on the device as the timestamp of the data sample. Optionally, you can specify a
timestamp for the sample. You may want to specify a different time if there is a delay between the time you collect the data and the
time you publish it to the agent.

Optionally, the application can call iot_telemetry_attribute_set to specify other information about the telemetry, such as the units. If
you specify the telemetry units, the server and the application must share a common interpretation of the units.

The server stores telemetry data for 90 days.

Best Practices for Sending Telemetry

To optimize telemetry processing on the server, observe the following recommendations:

• Send telemetry samples only when information changes or specific events occur.•

• Send one sample per minute or fewer.•

13| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



• For bursts of data, send samples at a maximum rate of once per second, and limit this sample rate to five minutes or less.•

• Do not send more than 600 samples within a 15 minute period.•

Telemetry APIs

Function Description

?iot_telemetry_allocate
Create a telemetry object and allocate the required
memory.

?iot_telemetry_free
Destroy a telemetry object and free the associated
memory.

?iot_telemetry_register Register a telemetry object with the agent.

?iot_telemetry_deregister Deregister a telemetry object from the agent.

?iot_telemetry_publish Publish a telemetry sample to the agent.

?iot_telemetry_publish_raw Publish a raw data sample to the agent.

iot_telemetry_attribute_set Specify additional information about the telemetry data.

iot_telemetry_attribute_set_raw
Specify additional information about the raw telemetry
data.

iot_telemetry_timestamp_set Specify the timestamp of a telemetry sample.

4. Sending Telemetry Data to the Server

An application can send telemetry data, such as readings from a sensor, to the server using the telemetry APIs.

The function parameters max_time_out and txn are for future use.

 NOTE: If you publish raw telemetry, the maximum length is 1024 bytes minus the header.

Prerequisites

You must have previously initialized the agent and registered the application with the agent (see Registering Your Application with
the Agent on page 11).

To send data to the server, the agent must be connected to the server.

To view your telemetry on the management console, you must have an administrator account or an account with the required
permissions. For more information, see Permission Sets for the Management Console.

Procedure

1. Allocate the memory for the telemetry object.

14| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Specify the value returned from the iot_initialize function, which you called when you registered your application, for the handle
parameter.

Specify a name and a data type for the telemetry object.

iot_telemetry_t* temperature;
temperature = iot_telemetry_allocate(agentHandle, "temperature", IOT_TYPE_FLOAT32);

2. (Optional) Specify the telemetry units.

result = iot_telemetry_attribute_set(temperature, "udmp:units", IOT_TYPE_STRING, "fahrenheit");

3. Register the telemetry object with the agent.

Specify NULL for the txn and zero for the max_time_out parameter.

result = iot_telemetry_register(temperature, NULL, 0);

4. Collect the data.
5. (Optional) Specify the data collection time.

In the following example, the collection time is the current time, which is the default.

iot_timestamp_t tstamp;
?
tstamp = iot_timestamp_now();
result = iot_telemetry_timestamp_set(temperature, tstamp);

You can also specify the timestamp as an offset in milliseconds from the current time to specify an earlier or later collection time.
In the following example, the collection time is two minutes earlier than the current time.

iot_timestamp_t tstamp;
?
tstamp -= 120000;
result = iot_telemetry_timestamp_set(temperature, tstamp);

6. Send the telemetry sample to the server.

Specify NULL for the txn and zero for the max_time_out parameter.

result = iot_telemetry_publish(temperature, NULL, 0, IOT_TYPE_FLOAT64, 17.5);

When the application publishes the sample to the agent, the agent transmits the telemetry sample to the server.

7. To view your data on the management console, do the following:
1. If you have not already done so, sign in to the management console with your user name and password at https://
www.helixdevicecloud.com.
2. Click DEVICES.
3. In the Device Name, ID, MAC Address box, begin typing the device name, device ID, MAC address, or any other device
attribute until your device appears in the list.
4. In the Device ID column, click your device.
5. On the device details page of the device, click Telemetry Data.

15| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

https://www.helixdevicecloud.com
https://www.helixdevicecloud.com


If the device is transmitting data or has transmitted data in the previous 90 days, the application name appears in the list.

6. Click Expand on the left side of the page in the application row.

A snapshot of the current telemetry values appears.

7. To view historical data for individual telemetry metrics, expand the telemetry entry and the data appears in graph or list
form.

If historical data is available but does not initially appear on the page, you may need to select a different date range to see
the data.

Postrequisites

If you do not need the telemetry object after you send the data, call the iot_telemetry_deregister and iot_telemetry_free functions to
free the memory allocated for the telemetry object.

Related information
Viewing Telemetry Data

5. Sending Location Data to the Server

You can send geolocation data to the server to monitor your device location.

Specifying location information for your device is optional.

16| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



You can acquire location information using a wireless network adapter or GPS antenna on your device. For example, you might want
to track the location of a device in a building or the location of a device in a moving vehicle.

You can specify the following location properties:

Location Property Description

latitude and longitude (mandatory)
?decimal floating point numbers conforming to the
WGS84 specification

source
source of the location data; valid sources are WiFi, GPS,
fixed, and unknown

accuracy and altitude accuracy
?accuracy in meters of the source of the location
properties

heading
?direction of travel specified as degrees clockwise of
true north (range 0 through 359), where north is 0
degrees, east is 90 degrees and west is 270 degrees

altitude altitude in meters

speed speed of travel in meters per second

tag
string value to specify additional information about the
sample

The agent validates the values of latitude, longitude, and heading properties.

To transmit location data, you create and register a telemetry object, create a location data sample, and specify the location data
sample as the telemetry value when you publish the telemetry.

Location information is available as telemetry on the server and location data appears on the management console under the
Telemetry Data tab for each device. The application and telemetry object names are GeoLocation and Location, respectively; the
data does not appear under the application or the telemetry object names.

Location APIs

Function Description

?iot_location_accuracy_set Specify the accuracy of the location sample in meters.

?iot_location_allocate

Create a location sample, allocate the required memory,
and specify an initial location.
Valid location values:

latitude: -90 through 90

longitude: -180 through 180

iot_location_altitude_set Specify the altitude of the location in meters.

17| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Function Description

iot_location_altitude_accuracy_set Specify the accuracy of the altitude in meters.

iot_location_free
Destroy a location sample and free the associated
memory.

iot_location_heading_set
Specify the heading of the location in degrees.
Valid values are from 0 through 360.

iot_location_set

Update the latitude and longitude of the location.
Valid values:

latitude: -90 through 90

longitude: -180 through 180

iot_location_source_set Specify the source of the location data.

iot_location_speed_set
Specify the speed of the location sample in meters per
second.

iot_location_tag_set Specify a descriptive value of the location.

Prerequisites

You need a wireless network adapter or GPS antenna and the associated drivers that are compatible with your board. For more
information about the supported boards and hardware, see the information for the supported operating systems.

If you use a wireless network for location data, you need software libraries on your device to access geolocation data from a service
provider, such as Google. Depending on your service provider, you may need a commercial subscription.

You must have previously initialized the agent and registered the application with the agent (see Registering Your Application with
the Agent on page 11).

Before you can successfully send data to the server, the agent must be connected to the server.

To view location telemetry on the management console, you must have an administrator account or an account with the required
permissions. For more information, see Permission Sets for the Management Console.

Procedure

1. Allocate the memory for the location telemetry object.

Specify the value returned from the iot_initialize function, which you called when you registered your application, for the handle
parameter. Specify IOT_TYPE_LOCATION for the type parameter.

The value you specify for the name parameter is only used internally by the agent to ensure that the telemetry object is unique.
Specify any valid string.

18| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



iot_telemetry_t* location_telemetry;
location_telemetry = iot_telemetry_allocate(agentHandle, "location", IOT_TYPE_LOCATION);

2. Register the location telemetry object with the agent.

Specify NULL for the txn parameter and zero for the max_time_out parameter.

result = iot_telemetry_register(location_telemetry, NULL, 0);

3. Allocate the memory for the location data sample and specify the mandatory location information.

Retrieve the location data from your geolocation service provider, GPS antenna, or use fixed values.

Specify latitude and longitude as decimal values.

struct iot_location_t* location_data;
iot_float64_t latitude;
iot_float64_t longitude;

/* obtain location information - not shown */

location_data = iot_location_allocate( latitude, longitude );

4. (Optional) Specify the source of the location data.

For the sample parameter, specify the value returned from the iot_location_allocate function.

result = iot_location_source_set( location_data, IOT_LOCATION_SOURCE_GPS );

5. (Optional) Specify optional location attributes as required, either with fixed values or values obtained from your service provider.

result = iot_location_accuracy_set( location_data, accuracy_value );
result = iot_location_altitude_set( location_data, altitude_value );
result = iot_location_tag_set( location_data, "Kitchen" );

6. Send the location data sample to the server.

Specify NULL for the txn parameter and zero for the max_time_out parameter.

Specify the location data sample for the data parameter.

result = iot_telemetry_publish( location_telemetry, NULL, 0, IOT_TYPE_LOCATION, location_data )
;

The agent sends the location data to the server.

7. To update the location of the device, call the iot_location_set with new latitude and longitude values.

result = iot_location_set( location_data, -80.00, 100.9);
result = iot_telemetry_publish( location_telemetry, NULL, 0, IOT_TYPE_LOCATION, location_data )
;

The agent sends the new location data to the server.

8. To view the location data on the management console, do the following:

19| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



1. If you have not already done so, sign in to the management console with your user name and password at https://
www.helixdevicecloud.com.
2. Click DEVICES.
3. In the Device Name, ID, MAC Address box, begin typing the device name, device ID, MAC address, or any other device
attribute until your device appears in the list.
4. In the Device ID column, click your device.
5. On the device details page of the device, click Telemetry Data and expand the GeoLocation entry.

A snapshot of the most recent location data appears.

6. To view historical location data, expand the Location entry

The data appears in list form. Graph form is not available for location telemetry.

If historical data is available but does not initially appear on the page, you may need to select a different date range to see
the data.

On the map view on the management console, the device position updates if you select Get position from device in the
basic device details to use the telemetry data from the device. The management console does not update the position
dynamically when the device sends new data. For more information, see Showing the Device Position on the Map View.

Examples

The iot-app-complete and iot-app-simple-location example applications provided with the agent show example code for transmitting
location data with all attributes specified.

Postrequisites

If you do not need the location data sample and the telemetry object after you send the location data, call the iot_location_free,
iot_telemetry_deregister, and iot_telemetry_free functions to free the associated memory.

Related information
Sending Telemetry Data to the Server on page 14
Showing the Device Position on the Map View

20| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

https://www.helixdevicecloud.com
https://www.helixdevicecloud.com


6. About Custom Actions

Applications define custom actions to add to the device management capabilities provided by the agent.

You can specify seven parameters or fewer for an action, where the valid data types are Boolean, float32, float64, int32, int64, int16,
int8, uint8, uint16, uint32, uint64, string, and raw. An application can register 255 actions or fewer with the agent. An action can have
20 attributes or fewer.

When an application registers an action with the agent, the agent publishes the registered actions to the server where they appear
under the CUSTOM ACTIONS menu on the management console. The actions on the server can be initiated manually on one or
more devices or automatically through a rule when a specified condition occurs. For more information about rules, see Creating
Rules.

An application must register an action handler against the action to call when the server sends the action to the device. The action
handler can be either a C function or any executable program on the device (a command).

If you use a C function, it can optionally specify a parameter to send a response to the server as part of the command execution. Valid
response data types are Boolean, float, integer, string, and raw. The function also can specify the user_data parameter to pass
application-specific data to the command. The agent does not use this data or send it to the server. If your application does not
require additional data, specify NULL.

A command is any executable program on the device, including operating system commands. You might want to register a script as
the command if you do not want to write C code or if you want to reuse an existing script. When the agent receives the action from
the server, the agent runs the command under the application process, but the application is not notified of the script execution.
Parameters are passed to the script through stdin and the script is responsible for parsing the parameter data types and values
correctly. Parameter names must contain only alphanumeric characters, dot (.), and dash (-). Output is sent to stdout; commands
cannot return a response to the server.

VxWorks does not support registering a command as a custom action.

Action APIs

Function Description

?iot_action_allocate
?Create an action and allocate the required
memory.

iot_action_attribute_set Add an attribute to an action.

?iot_action_deregister Deregister an action from a service.

iot_action_free Destroy an action and free the associated memory.

iot_action_parameter_add Add a parameter to an action.

iot_action_parameter_get Retrieve the value of a parameter.

iot_action_parameter_raw_get Retrieve the value of a raw parameter.

iot_action_parameter_set Return a value in response to the action.

iot_action_parameter_set_raw Return a raw value in response to the action.

21| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Function Description

iot_action_register Register an action with the agent.

iot_action_register_callback
Register a callback function to call when the
specified action is received.

iot_action_register_command
Register a system command to call when the
specified action is received.

7. Receiving Actions from the Server

?Applications on the device can receive and process actions initiated from the server through actions registered with the agent.

When an action is executed from the server, the agent processes the registered callback or command in a worker thread.

The function parameters max_time_out and txn are for future use.

Prerequisites

?You must have previously initialized the agent and registered the application with the agent (see Registering Your Application with
the Agent on page 11).

To receive actions, the agent must be connected to the server.

To run your actions from the management console, you must have an administrator account or an account with the required
permissions. Sending files, retrieving files, and remote login actions require additional permissions. For more information, see
Permission Sets for the Management Console.

Procedure

1. Allocate the memory for the action.

Specify a name for the action.

Specify the value returned from the iot_initialize function, which you called when you registered your application, for the handle
parameter.

iot_action_t* myAction;
myAction = iot_action_allocate(agentHandle, "myAction" );

2. Optionally, add one or more parameters to the action.

Specify the parameter name and data type. Specify zero for the max_time_out parameter.

Specify IOT_PARAMETER_IN_REQUIRED for the param_type.

To specify that a parameter is both an input parameter and an action response, specify (IOT_PARAMETER_IN_REQUIRED |
IOT_PARAMETER_OUT_REQUIRED).

If you use a script as the action handler, ensure that the parameter name contains only alphanumeric characters, ".", and "-".

22| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



result = iot_action_parameter_add( myAction, "parm_int", IOT_PARAMETER_IN_REQUIRED, IOT_TYPE_UI
NT32, 0);
result = iot_action_parameter_add( myAction, "parm_string", IOT_PARAMETER_IN_REQUIRED, IOT_TYPE
_STRING, 0);

3. Optionally, add one or more parameters to return as an action response.

Specify IOT_PARAMETER_OUT_REQUIRED for the param_type. Specify zero for the max_time_out parameter.

iot_action_parameter_add( myAction, "boolean_response", IOT_PARAMETER_OUT_REQUIRED, IOT_TYPE_BO
OL, 0u );

4. If you use a C function as the action handler, write the function as follows:
1. Use the following function signature:

iot_action_status_t myActionCallback( iot_action_request_t *request, void* user_data )

2. If you registered parameters with the action, retrieve the parameter values sent from the server.

Specify the parameter name and memory to store the returned value.

Specify IOT_FALSE for the convert parameter.

 
iot_status_t result;
const char* param_name_int = "parm_int";
const char* param_name_string = "parm_string";
int32_t value_int = 0;
const char* value_string = NULL; 
result = iot_action_parameter_get( request, param_name_int, IOT_FALSE, IOT_TYPE_UINT32, &amp
;value_int );
result = iot_action_parameter_get( request, param_name_string, IOT_FALSE, IOT_TYPE_STRING,
                                           &amp;value_string);

3. Optionally, send a response to the server.

result =iot_action_parameter_set( &amp;request, "boolean_response", IOT_TYPE_BOOL, IOT_TRUE)
;

5. Register an action handler for the action.

Option Description

Register a
callback
function.

Specify the address of the C function you created.
Specify NULL for the txn and zero for the max_time_out parameter.

void* user_data;

user_data = malloc( 1u );
result = iot_action_register_callback( myAction, &amp;myActionCallbac
k, user_data, NULL, 0 );

23| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Option Description

You can also specify NULL for the user_data parameter.

Register a
script.

Specify the command, including the full path, to execute.
Specify NULL for the txn and zero for the max_time_out parameter.

result = iot_action_register_command( myAction, "/pathTo/test.sh", NU
LL, 0 );

If you register more than one action handler (for example, a callback function and a script), the register function returns an error.

The action appears on the management console as an entry in the CUSTOM ACTIONS menu when you select the device in the
device list or on the device details page of an individual device.

6. If required, repeat steps 1 on page 22 through 5 on page 23 to create and register additional actions with the server.
7. To execute the action from the server, do the following:

1. If you have not already done so, sign in to the management console with your user name and password at https://
www.helixdevicecloud.com.
2. Click DEVICES.
3. In the Device Name, ID, MAC Address box, begin typing the device name, device ID, MAC address, or any other device
attribute until your device appears in the list.
4. In the Device ID column, click your device.
5. Select CUSTOM ACTIONS and then select the name of your action.

An entry appears in the list in the upper-right corner to indicate that the action has been sent to the device.

6. To view the action status and history, from the device details page, click Device Actions Log.
7. Based on the timestamp and the action name, locate the row for your action.

When the action completes, the Status column shows Completed.

8. Expand the row.

If the action completed successfully, the Details area shows the message The device executed the service command
successfully and it is complete.

Postrequisites

When you no longer need the command, call iot_action_deregister to deregister the action from the agent and iot_action_free to
free the memory allocated for the action.

8. Python Bindings

The agent API supports language bindings to enable development in languages other than C.

Python bindings for the agent APIs are supported on Wind River Linux, Wind River IDP XT, Windows, and Ubuntu.

24| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

https://www.helixdevicecloud.com
https://www.helixdevicecloud.com


Bindings for Linux

Agent-related Python files are located as follows:

Operating System Location

Wind River Linux and IDP XT
/usr/lib64/python2.7/site-packages directory on 64-bit
targets
/usr/lib/python2.7/dist-packages on 32-bit targets

Ubuntu /usr/lib/python2.7/site-packages

In your application, import definitions from the iot_python module. To generate the Python API documentation on the device, run
the following:

# pydoc iot_python > pythondoc.txt

The /usr/bin/iot-py-complete.py sample application is available on the device.

On your host computer for Wind River Linux and IDP XT, the complete.py sample application is available in the following directory:

projDir /build/iot/git/apps/complete

Bindings for Windows

You must have Python 2.7.x  32-bit installed on the device on which you want to run the application and the computer on which you
develop your application.

If you select the Development component at installation time, the agent-related Python files are located in the installDir \bin folder,
where installDir  is the folder where you installed the agent. The iot_python module is also installed in pythonInstallDir \Lib\site-
packages.

In your application, import definitions from iot_python.

To generate the Python API documentation, run the following in a Command Prompt window:

C:\> cd installDir\bin
C:\> pythonInstallDir\Lib\pydoc.py iot_python > yourDir\pythondoc.txt

If you select the Examples component at installation time, the installDir \bin\iot-py-complete.py sample application is installed with
the agent.

API Differences between C and Python

Function Description

iot_log_callback_set The user_data parameter is not supported.

iot_log
This function does not support parameters to format the
log message. The Python application must format the
message.

25| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Function Description

iot_action_register_callback The user_data parameter is not supported

iot_action_parameter_get

Returns a tuple of status and parameter instead of a
status of type iot_status_t, where status is the return
code and parameter is the parameter value. Therefore,
the API does not include the data_ptr parameter.

iot_action_parameter_get_raw

Returns a tuple of status and parameter instead of a
status of type iot_status_t, where status is the return
code and parameter is the parameter value. Therefore,
the API does not include the data parameter.
The parameter value is always a string.
The API does not include the length parameter because
Python strings are automatically null-terminated.

Types Description

iot_log_callback_t

Specify the log_source parameter as a tuple of
function_name, file_name, line_number instead of as
type iot_log_source_t.
The user_data parameter is not supported.

iot_action_callback_t The user_data parameter is not supported.

• In addition to IOT_TRUE and IOT_FALSE, the Python True and False definitions are also valid for Boolean parameters and•
return values.

• Unsigned integer and IOT_TYPE_FLOAT32 types are not available for functions that need a specified type.•

• Integer parameter values greater than the maximum value of a 64-bit integer are rejected.•

• The macro IOT_LOG is not available because Python does not support macros.•

26| Documentation Application Development

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



4. SAMPLE APPLICATIONS
• Sample Applications on page 27
• Modifying and Building the Sample Applications on Wind River Linux and IDP XT on page 28
• Modifying and Building the Sample Applications for Windows on page 29
• Modifying and Building the Sample Applications for Ubuntu on page 30

1. Sample Applications

Sample applications provide code that you can use as a starting point when you develop your application.

The following C code samples are available on Wind River Linux, Wind River IDP XT, Windows, and Ubuntu:

iot-app-complete

Registers four actions, 13 telemetry metrics, and location telemetry.

iot-app-simple-actions

Registers three actions.

iot-app-simple-telemetry

Registers 13 telemetry metrics and an action to start and stop transmitting telemetry data.

iot-app-simple-location

Registers location telemetry and an action to start and stop transmitting location telemetry data.

The following sample application is available in Python:

iot-py-complete.py

Registers four actions, 13 telemetry metrics, and location telemetry.

 NOTE: To view telemetry sent from the sample applications or run device actions on the management console, you need an
administrator account or an account with the required permissions. For more information, see Permission Sets for the
Management Console.

On Wind River Linux, Wind River IDP XT, and Ubuntu, the executable programs are installed by default on the device. If the device is
connected to the server, you can start the application on the device and then sign in to the management console to run the
registered actions and view telemetry data.

On Windows, you must select the Examples component at installation time to install the sample source and executable programs.

On Windows and Ubuntu, the host (development computer) and device may or may not be the same computer.

Source and executable program files are available as follows:

27| Documentation Sample Applications

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Operating System Source Location on Host Source Location on Device Executable Location on
Device

Wind River Linux and IDP
XT

projDir /build/iot/git/apps
after building the platform
project

/usr/share/iot/examples /usr/bin

Windows installDir \examples installDir \examples installDir \bin

Ubuntu /usr/share/iot/examples /usr/share/iot/examples /usr/bin

 NOTE: To modify the source code on the target in the directories in which they are installed, you may need administrator or
superuser privileges. You should copy the files to a directory that does not require additional privileges to write to it.

VxWorks 7

The following application is available:

hdc_telemetry_test

Registers an action with four parameters, an action to start and stop transmitting telemetry data, and transmits 13 telemetry
metrics. The entry point is hdc_telemetry_test_main.

After you install VxWorks 7 on your host computer, the sample application source is located on your host computer in the following
directory:

installDir /vxworks-7/pkgs/app/hdc-releaseNum /agent/example

Additional Samples for Wind River Linux and IDP XT

If you include the wr-iot-apps layer when you configure your platform project, additional samples are available in source form on your
host computer and as executable programs on your target. For details about the examples, see the projDir /layers/wr-iot-apps/
README.md file after you run the configure command.

2. Modifying and Building the Sample Applications on Wind River Linux and
IDP XT

If you included development tools in your target image, you can modify and build the sample applications on your target.

The sample applications are located under the /usr/share directory on your target, which requires superuser privileges to write to it.
You should copy the /usr/share/iot/examples directory to a location to which you have write privileges.

Prerequisites

When you built your platform project, you must have enabled the --with-template=feature/self-hosted template and --with-
package=iot-dev package, or the application development SDK you received must have been built with these options enabled.

To view telemetry sent from the sample applications or run device actions on the management console, you need an administrator
account or an account with the required permissions. For more information, see Permission Sets for the Management Console.

28| Documentation Sample Applications

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Procedure

1. If you have not already done so, copy the /usr/share/iot/examples directory to another directory to which you have write
permissions.

For example, copy the directory to /home/yourUsername /HDC/examples.

2. In a terminal window, change to the directory that contains the sample you want to modify or build.
3. Make changes to the sample source code as needed.
4. To build the sample, type make.

After the compile completes, the executable program is created in the same directory.

5. To run the sample, type ./sampleProgram .

The application starts and the output appears in the terminal window. Actions appear in the CUSTOM ACTIONS menu on the
management console.

Postrequisites

You may want to copy your modified source files to your host computer for later use.

3. Modifying and Building the Sample Applications for Windows

Sample applications provide C code and Windows-specific makefiles to create simple actions and telemetry.

Visual Studio is the recommended development environment. The samples were verified using Visual Studio 2015; however, newer
releases should also work.

If you installed Helix Device Cloud under C:\Program Files (x86) or C:\Program Files, you should copy the examples folder to a
folder that does not require administrator privileges to write to it. Copying the files to a different folder also ensures that the files are
not removed if you uninstall the agent.

Prerequisites

You must have installed Visual Studio.

To view telemetry sent from the sample applications or run device actions on the management console, you need an administrator
account or an account with the required permissions. For more information, see Permission Sets for the Management Console.

Procedure

1. If you have not already done so, copy the installDir \examples folder to another folder.

For example, copy the files to C:\Users\username \HDC\examples.

2. Make changes to the sample source code as needed.
3. Open a Visual Studio Developer Command Prompt.

29| Documentation Sample Applications

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



You must perform the following steps in a Visual Studio Developer Command Prompt window and not in a standard Command
Prompt window.

4. In the directory of the sample you modified, build the sample.

C:\> cd C:\users\username\HDC\examples\sampleDir
C:\> nmake

After the compile completes, the executable file is created in the same directory.

5. To run the sample, double-click the executable file in Windows Explorer.

A Command Prompt window opens and the sample application output appears. Depending on which sample you built, you can
go to the management console to run actions and view telemetry.

4. Modifying and Building the Sample Applications for Ubuntu

Sample applications provide C code and Linux-specific makefiles to create simple actions and telemetry.

The sample applications are located under the /usr/share directory, which requires superuser privileges to write to it. You should
copy the /usr/share/iot/examples directory to a location to which you have write privileges. Copying the files to a different folder
also ensures that the files are not removed if you remove the agent package.

Prerequisites

You need make, gcc, and glibc installed.

To view telemetry sent from the sample applications or run device actions on the management console, you need an administrator
account or an account with the required permissions. For more information, see Permission Sets for the Management Console.

Procedure

1. If you have not already done so, copy the /usr/share/iot/examples directory to another directory to which you have write
permissions.

For example, copy the directory to /home/yourUsername /HDC/examples.

2. In a terminal window, change to the directory that contains the sample you want to modify or build.
3. Make changes to the sample source code as needed.
4. To build the sample, type make.

After the compile completes, the executable program is created in the same directory.

5. To run the sample, type ./sampleProgram .

The application starts and the output appears in the terminal window. Actions appear in the CUSTOM ACTIONS menu on the
management console.

30| Documentation Sample Applications

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



5. SOFTWARE UPDATE
• Software Update on page 31
• Creating an Update Package on page 33

1. Software Update

You can create an update to the device software and deploy it from the server to the device where the agent automatically installs
the update.

 NOTE: This method of creating software updates applies only to devices running release 2.2 of the agent or later.

To create and deploy updates to devices running release 2.1 of the agent or earlier, you must create the update using
the steps from previous releases and use the administration utility to deploy the update. For more information, see
Wind River Helix Device Cloud Agent Programmer's Guide, 2.1 and Wind River Helix Device Cloud Administration
Utility User's Guide: Software Update. To create an update to migrate a device running the 2.1 release of the agent
to the 2.2 release, see the Wind River Helix Device Cloud Release Notes, 2.2.

You can create an update package that contains update files created from a platform project to a device running the
2.2 release of the agent if you create a new update package from the management console. For an example, see
Creating an Update Package on page 33.

Software update is supported for devices that run Wind River Linux, Wind River IDP XT, Windows, and Ubuntu.

To perform updates on devices that run Windows, you must install Python 2.7.x  32-bit separately.

A package consists of the following:

• the software to update, either in the package itself or on a remote server•

• instructions to install the software on the device•

• criteria to define the list of devices to which the update can be deployed and to enable the device to verify the update•
compatibility

When you create the package, you upload the files that are required for the update, including the files that contain instructions for
the installation stages, if applicable. The maximum total file size is two GB.

By default, packages are created in the unpublished state. Typically, packages remain in this state until update testing completes. You
change the state to published when an update is ready for production.

When you create the package, you can specify the devices that are compatible with the update, based on device properties. If you
select the operating system version in compatibility criteria, the agent on the device verifies the specified version against the software
on the device before installing the update. If you select multiple versions, the device software is compared against the lowest
selected version.

Package Contents

You can update applications on the device, the agent, and the kernel (Wind River Linux and IDP XT only). You can use the process to
update your own applications or add applications you receive from third-party vendors.

The update can include any files you want, including individual files and archives in a format that is compatible with the operating
system on the device, such as an RPM or a zip file.

You can also create an update package that contains only instructions. For example, an update that retrieves software from an
external package repository might consist of only the instructions to retrieve and install the package.

31| Documentation Software Update

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Package Instructions

You create an update package from the management console that specifies the operating system and package specific instructions
for each stage.

All instructions are optional. An instruction is any single-line command of 256 characters or fewer. The instruction can be any system
command, an existing program on the device, or a program included in the package itself. If your instructions for any stage require
more than a single-line command, you must create a file with the instructions, such as a Linux shell script or Windows batch file.

You provide instructions for the following stages of the installation process:

preinstall

Instructions to run before the installation begins, such as instructions to stop services on the device or to back up existing files.

install

Instructions to install the update.

postinstall

Instructions to run after the installation finishes successfully, such as instructions to restart services or remove temporary files.

error handling

Instructions to run if the update fails at any stage, such as instructions to restore the system to its previous state.

On Windows, the update procedure runs under a process with administrator privileges. The update instructions can modify
directories and files and run commands that require administrator privileges. However, if you start applications in any of your
instructions, you must use the AT command to avoid blocking the update process. See the example scripts provided in the directory
listed below.

On Wind River Linux, Wind River IDP XT, and Ubuntu, the update procedure runs as the iot user, which can execute the commands
specified in the /etc/sudoers file. You must run any commands that require superuser privileges or require access to files and
directories owned by the root user using sudo. If you attempt to run commands that are not in the /etc/sudoers file, an error
appears in the update log and the update fails.

 NOTE: To test your instructions completely, you should create a package on the management console. Testing your
instructions from the command line or while running as the root user may not expose errors such as insufficient
privileges to run commands or applications.

Package Deployment

When you deploy the package to devices, the server downloads the files to the device and the agent runs the instructions you
provide. All commands and paths are relative to the predefined directory into which the files are downloaded. If your update contains
files in a subdirectory, you must specify the path to the subdirectory in your instructions.

During deployment, the status of the deployment appears under the Deployments tab on the Software Updates page.

Detailed progress of each stage of the update is available on the device details page under the telemetry item
telemetry_sw_update. For information about viewing telemetry, see Viewing Telemetry Data.

If the deployment fails, the software update process does not revert to the previous software running on the device in any situation.
You must implement any recovery actions in your error handling instructions.

Update Examples

Samples of scripts for the update stages and instructions to use them are available as follows:

32| Documentation Software Update

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Operating System Location

Wind River Linux and IDP XT

After you run the make command in your platform
project, examples of an application update and kernel
update are available in the following directory on your
host computer:
projDir /build/iot/git/share/ota-examples/linux
The examples are also available on your target in the
following directory:
/usr/share/iot/examples

Windows

If you select the Examples component when you install
the Helix Device Cloud agent, an example of an
application update is available in the following folder:
installDir \examples\ota

Ubuntu

After you install the Helix Device Cloud agent, an
example of an application update is available in the
following directory:
/usr/share/iot/examples/app-update

Basic Workflow

1. Create the files to include in the update using any method you want.

2. Create the update package using the management console.

3. Deploy the package using the management console to one or more devices.

2. Creating an Update Package

An update package includes the instructions to install software on the device and if applicable, contains the files to install on the
device.

Prerequisites

You must have an administrator account or an account with the required permissions for software packages. For more information,
see Permission Sets for the Management Console.

Procedure

1. If you have not already done so, sign in to the management console at https://www.helixdevicecloud.com with your user name
and password.

2. On the Software Updates page, click Available Packages and then click CREATE NEW PACKAGE.
3. In the Package Name box, type a unique name that is seven alphanumeric characters or fewer.
4. In the Version box, type a version that is five alphanumeric characters or fewer.
5. (Optional) In the Description box, type a detailed description of the package that is 500 characters or fewer.
6. (Optional) Specify the filter criteria to select compatible devices.

1. In the Select criteria list, select the device property you want to use to determine the compatible devices.

33| Documentation Software Update

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3

https://www.helixdevicecloud.com


The Select list contains the values based on currently registered devices.

2. In the Select list, select one or more values.

Devices matching any of the selected values are compatible with the update.

If you select OS Version, the value the agent will use to check compatibility when installing the update appears in the cpe
string below.

3. (Optional) To add additional device properties, click Add Filter and repeat the steps above as needed.

You can select the same property multiple times.

Devices that match all the properties in each filter are compatible with the update.

4. (Optional) To confirm the devices that are compatible with the selected properties, click PREVIEW COMPATIBLE
DEVICES.

7. (Optional) In the Package Files area, drag the required files and directories into the window.

You can add or remove files from the list at any time during package creation.

The maximum total file size is two GB.

When the file upload completes successfully, the progress bar shows Success.

8. (Optional) In the Install Commands area, type the required commands in each box, where each command is 256 characters or
fewer.

The Key/Value Command is for future use and any values you enter are ignored.

If you specify special characters in your instructions, you must use an escape character, which is operating system-specific.

The following example shows an update that contains a single, executable file called pseudo-telemetry and shell scripts for each
stage of the installation.

34| Documentation Software Update

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



9. Choose the archive format that is compatible with the operating system running on the device.

Choose .zip for Windows and .tar.gz for Linux-based operating systems.

10. Choose whether to reboot the device after the update completes successfully.

 NOTE: If you update any agent-related files, such as configuration files, you must reboot the device.

11. When you finish, click SAVE.

The package appears in the list of available packages in the unpublished state and is ready to deploy. The package name is a
combination of the values specified in the Package Name and Version boxes.

Example: Update Package Created from a Platform Project

You can create and deploy an update package to a device running release 2.2 of the agent on Wind River Linux or IDP XT that
contains an update generated from a platform project using the instructions from releases prior to 2.2. You need the system-
update.tar.gz file you created.

Fill in the instructions in the Install Commands section as follows:

Preinstall Command

cd /var/lib/iot/update/download && tar -xvf system-update.tar.gz

Install Command

sudo rpm -ivh --force /var/lib/iot/update/download/system-update-RPMVersion.rpm

On Error Command

rm /var/lib/iot/update/download/system-update.tar.gz && rm /var/lib/iot/update/download/system
-update-RPMVersion.rpm

In the Package Files area, upload the system-update.tar.gz file.

35| Documentation Software Update

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Follow the remaining steps above to finish creating the update package.

Postrequisites

You can click the package name to view the details and edit, delete, or deploy the package. Only one user at a time can edit a
package.

For information about deploying a package, see Deploying a Software Update Package.

36| Documentation Software Update

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



6. AGENT CONFIGURATION
• Agent Configuration on page 37
• Updating the Agent Configuration Using Software Update on page 38

1. Agent Configuration

Agent properties and behavior can be configured in the iot.cfg file.

The iot.cfg file contains attribute-value pairs in JavaScript Object Notation (JSON) format.

Sample files are available as follows:

Operating System Location

Wind River Linux and IDP XT projDir /build/iot/git/cmake_build/bin/iot.cfg.example

Windows installDir \etc\iot.cfg.example

VxWorks 7
installDir /vxworks-7/pkgs/app/hdc-releaseNum /agent/
sample_cfg/etc/iot.cfg

Ubuntu /etc/iot/iot.cfg.example

On Wind River Linux, Wind River IDP XT, Ubuntu, and Windows, you can use software update to download the iot.cfg file to the
device and restart the device to apply the new values.

On Wind River Linux and IDP XT, you can also write a Bitbake recipe to add the file to the rootfs when you build your platform
project.

On all Linux targets, you must ensure that the iot user has read permission for the file. If you edit the file on the target, check the
permissions after you finish.

To change the values for a device running VxWorks 7, change the values in the file you provide on your persistent storage or in your
kernel image. The HDC_AGENT_CONFIG_FILE VIP parameter specifies the file location. Only the agent property and log level
attributes apply to VxWorks 7.

Agent Properties

Agent properties appear on the device list and device details page on the management console. They appear in the list of criteria to
select in the filter list on the device details page and in the list of criteria to select compatible devices when you create a software
package. The values of these properties are user-defined; the agent does not use them.

Agent properties have default values for Wind River Linux, Wind River IDP XT, Ubuntu, and Windows.

The following attributes represent agent properties:

• model_name•

• vendor_id•

• device_id•

• serial_number•

37| Documentation Agent Configuration

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Agent Log Level

By default, all logs are enabled in the agent log files. You can change the value of the log_level attribute to specify the log types you
want to include.

Disable and Enable Device Actions

The actions_enabled object contains a list of the device actions the agent supports. By default, all actions are enabled and appear in
the STANDARD ACTIONS and CUSTOM ACTIONS menus on the management console. You can change the Boolean value for each
action to prevent users from running the action. Disabled actions do not appear in the menus or appear but are not available to
select.

 NOTE: Although the action is shown in the file, disabling and enabling remote login is not currently supported.

For a description of the individual actions, see Agent Actions.

File Upload Directory Configuration

You can add to the list of directories the agent searches for files to include when the Retrieve Files action is run from the
management console and you can specify whether to remove files from the directories when the agent completes the action
successfully. The upload_additional_dirs array contains a list of one or more directories to search. The Boolean value of the
upload_remove_on_success attribute indicates whether the agent deletes the uploaded files in the directories if the files are
retrieved successfully.

 NOTE: On Linux devices, ensure that the iot user owns the directories listed in the upload_additional_dirs array.

Ensure that you use escape sequence \\ for the \ character in Windows path names.

For details about the attributes and valid values, see iot.cfg on page 41.

2. Updating the Agent Configuration Using Software Update

You can use software update to download the agent configuration file, iot.cfg, to the device and restart the device to apply the new
values.

The following steps are for Wind River Linux, Wind River IDP XT, Ubuntu, and Windows.

 NOTE: Ensure that the iot.cfg file has valid JSON syntax. If there are errors, such as missing commas, an error appears in the
iot service log file and the agent registers successfully using the default values; the contents of the file are ignored.

On Linux targets, ensure that the iot user owns the file.

Prerequisites

You must be familiar with the procedures to create and deploy a software package from the management console. For information,
see Creating an Update Package on page 33 and Deploying a Software Update Package.

You must have an administrator account or an account with the required permissions for creating and deploying software packages.
For more information, see Permission Sets for the Management Console.

38| Documentation Agent Configuration

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Procedure

1. Copy the iot.cfg.example file to a suitable location on your host computer and rename it to iot.cfg.
2. Change the values of the fields as needed.
3. Create a software update package that contains the file and the operating system-specific instructions to add or replace the file.

 NOTE: You must choose Reboot on Completion to apply the update.

4. Deploy the update to compatible devices.

After the update completes and the device reboots, changes to the agent properties appear on the device list page, the device
details page, and in the list of criteria you can select when you create an update package or a filter on the device list page.

Disabled device actions do not appear in the actions menus or appear but are not available to select.

Example: Update iot.cfg on Wind River Linux and IDP XT

Copy the projDir /build/iot/git/cmake_build/bin/iot.cfg.example file to a local directory to which you have write privileges and
rename it to iot.cfg. Change the file as necessary.

The iot.cfg file can exist in three directories. The example shows the commands to remove the file if it exists in any of the directories
and to remove the example file.

The following shows the example instructions in the update package:

Preinstall Command

sudo rm -f /etc/iot/iog.cfg && sudo rm -f /etc/iot/iog.cfg.example && sudo rm -f /var/lib/iot/
iot.cfg && sudo rm -f /opt/intel/ccg/bin/iot.cfg

Install Command

sudo cp iot.cfg /etc/iot

Ensure that you choose Reboot on Completion.

Upload the iot.cfg file you created.

Example: Update iot.cfg on Windows

Copy the installDir \etc\iot.cfg.example file to a local directory to which you have write privileges and rename it to iot.cfg. Change
the file as necessary.

The iot.cfg file can exist in three folders. The example shows the commands in the batch file cleanup_iot_cfg_files.cmd used in the
preinstall instruction to remove existing copies of the file if it exists in any of the folders and to remove the example file.

set BASEPATH=c:\Program Files (x86)\Helix Device Cloud

rem Remove existing copies of the file from all possible folders

if EXIST "%BASEPATH%\etc\iot.cfg" del /F "%BASEPATH%\etc\iot.cfg"
if "%ERRORLEVEL%" neq "0"     goto EOF
if EXIST "%BASEPATH%\etc\iot.cfg.example" del /F "%BASEPATH%\etc\iot.cfg.example"
if "%ERRORLEVEL%" neq "0"     goto EOF
if EXIST "%BASEPATH%\bin\iot.cfg" del /F "%BASEPATH$\bin\iot.cfg"

39| Documentation Agent Configuration

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



if "%ERRORLEVEL%" neq "0"     goto EOF
if EXIST "C:\ProgramData\Wind River Systems\Helix Device Cloud\iot.cfg" del /F "C:\ProgramData\Win
d River Systems\Helix Device Cloud\iot.cfg"
if "%ERRORLEVEL%" neq "0"     goto EOF

echo success executed cleanup_iot_cfg_files.cmd > "c:\ProgramData\1.txt"

exit /B 0
:EOF

echo ERROR > "c:\ProgramData\1.txt"
exit /B 1

The following shows example instructions in the update package:

Prenstall Command

cleanup_iot_cfg_files.cmd

Install Command

COPY /y iot.cfg C:\"Program Files (x86)\Helix Device Cloud\etc\iot.cfg"

Ensure that you choose Reboot on Completion.

Upload the iot.cfg file you created and the cleanup_iot_cfg_files.cmd file.

Example: Update iot.cfg on Ubuntu

Copy the /etc/iot/iot.cfg.example file to a local directory to which you have write privileges and rename it to iot.cfg. Change the file
as necessary.

The iot.cfg file can exist in multiple directories. The example shows the commands to remove the file if it exists in two of the
directories and to remove the example file.

It is not necessary to run the commands with superuser privileges because the files and directories modified in the update are owned
by the iot user.

The following shows the example instructions in the update package:

Preinstall Command

rm -f /etc/iot/iog.cfg && rm -f /etc/iot/iog.cfg.example && rm -f /var/lib/iot/iot.cfg

Install Command

cp iot.cfg /etc/iot

Ensure that you choose Reboot on Completion.

Upload the iot.cfg file you created.

40| Documentation Agent Configuration

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



7. REFERENCES
• iot.cfg on page 41

1. iot.cfg

The iot.cfg file contains attribute-value pairs in JavaScript Object Notation (JSON) format that you can change to override the default
agent properties and agent behavior.

The location of the file on the target is operating-system specific.

Operating System Valid Locations

Wind River Linux and IDP XT
Ubuntu

any of the following locations:

/etc/iot (the default)

/var/lib/iot

Windows

any of the following locations:

installDir \etc (the default)

installDir \bin

C:\ProgramData\Wind River Systems\ Helix Device
Cloud

VxWorks 7
the location specified by the
HDC_AGENT_CONFIG_FILE VIP parameter

On Linux devices, ensure that the iot user owns the files.

The following table lists the attributes in the file and the valid values.

Attribute Valid Values

model_name
any valid string
only the first 100 characters or fewer appear on the management console

vendor_id
any valid string
only the first 100 characters or fewer appear on the management console

device_id
any valid string
only the first 100 characters or fewer appear on the management console

serial_number
any valid string
only the first 100 characters or fewer appear on the management console

41| Documentation References

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



Attribute Valid Values

log_level
ERROR, WARNING, INFO, TRACE, FATAL, ALERT, CRITICAL, NOTICE, DEBUG,
ALL.
Default: ALL

actions_enabled

shutdown_device
true, false
Default: true

reboot_device
true, false
Default: true

reset_agent
true, false
Default: true

file_transfers
true, false
Default: true

software_update
true, false
Default: true

restore_factory_images
true, false
Default: true

decommission_device
true, false
Default: true

dump_log_files
true, false
Default: true

remote_login Not supported

upload_remove_on_success
true, false
Default: true

upload_additional_dirs
array of comma-separated strings that specify valid directories on the device
Default: empty string

Example: Linux

{
"model_name": "model abc",
"vendor_id": "iot_vendor",
"device_id": "device 123",
"serial_number": "123456",
"fw_version": "2.3",
"build_version": "c8bbc71550fbf175fb9e7baa6349013f39130947",
"runtime_dir": "/var/lib/iot",
"log_level": "ALL",
"ssl_validation": true,

42| Documentation References

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3



"cert_path": "",
"actions_enabled": {

"shutdown_device": false,
"reboot_device": true,
"reset_agent": true,
"file_transfers": true,
"software_update": true,
"restore_factory_images": true,
"decommission_device": true,
"dump_log_files": true

},
"upload_remove_on_success": true,
"upload_additional_dirs": [

"/var/log","/home/user"
]

}

Example: Windows

{
"model_name": "model abc",
"vendor_id": "vendor xyz",
"device_id": "device 123",
"serial_number": "123456",
"fw_version": "2.3",
"build_version": "b9ee69959cf15e63dc0383ef53ccf107751ad5cb",
"runtime_dir": "%PROGRAMDATA%/Wind River Systems/Helix Device Cloud",
"log_level": "ALL",
"ssl_validation": true,
"cert_path": "etc\\ca-certificates.crt",
"actions_enabled": {

"shutdown_device": false,
"reboot_device": true,
"reset_agent": true,
"file_transfers": true,
"software_update": true,
"restore_factory_images": false,
"decommission_device": true,
"dump_log_files": true

},
"upload_remove_on_success": true,
"upload_additional_dirs": [

"C:\\Users\\test"
]

}

 NOTE: Ensure that you use escape sequence \\ for the \ character in Windows path names.

43| Documentation References

Wind River Helix Device Cloud Agent Programmer's Guide, 2.3


	Wind River Helix Device Cloud Agent Programmer's Guide, 2.3
	Helix Device Cloud Overview
	Introduction to Helix Device Cloud
	Helix Device Cloud Agent
	Where to Find Information

	Application Development
	Helix Device Cloud Applications
	Registering Your Application with the Agent
	About Telemetry
	Sending Telemetry Data to the Server
	Sending Location Data to the Server
	About Custom Actions
	Receiving Actions from the Server
	Python Bindings

	Sample Applications
	Sample Applications
	Modifying and Building the Sample Applications on Wind River Linux and IDP XT
	Modifying and Building the Sample Applications for Windows
	Modifying and Building the Sample Applications for Ubuntu

	Software Update
	Software Update
	Creating an Update Package

	Agent Configuration
	Agent Configuration
	Updating the Agent Configuration Using Software Update

	References
	iot.cfg


