
WIND RIVER MIPC
PROGRAMMER'S GUIDE, 2.0

Wind River MIPC Programmer's Guide, 2.0

Copyright Notice

Copyright © 2019 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the
prior written permission of Wind River Systems, Inc.

Wind River, Simics, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc. Helix, Pulsar, Rocket,
Titanium Cloud, Titanium Control, Titanium Core, Titanium Edge, Titanium Edge SX, Titanium Server, and the Wind River logo
are trademarks of Wind River Systems, Inc. Any third-party trademarks referenced are the property of their respective owners.
For further information regarding Wind River trademarks, please see:

www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant notices (if any) are provided for your
product on the Wind River download and installation portal, Wind Share:

http://windshare.windriver.com

Wind River may refer to third-party documentation by listing publications or providing links to third-party websites for
informational purposes. Wind River accepts no responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River

500 Wind River Way

Alameda, CA 94501-1153

U.S.A.

Toll free (U.S.A.): +1-800-545-WIND

Telephone: +1-510-748-4100

Facsimile: +1-510-749-2010

For additional contact information, see the Wind River website:

www.windriver.com

For information on how to contact Customer Support, see:

www.windriver.com/support

Wind River MIPC Programmer's Guide, 2.0

4 February 2019

https://www.windriver.com/company/terms/trademark.html
https://windshare.windriver.com/index.php/login
https://www.windriver.com/
https://www.windriver.com/support/

1. WIND RIVER MIPC PROGRAMMER'S GUIDE, 2.0

1 | Documentation

Wind River MIPC Programmer's Guide, 2.0

2. OVERVIEW
Introduction on page 2

Terminology on page 3

Architectural Overview of MIPC Communication on page 4

Restrictions on the Use of MIPC on page 6

Debugging a MIPC Target on page 7

Organization of This Document on page 7

2.1. Introduction

This Guide describes the features and use of Wind River Multi-OS Interprocess Communication (MIPC) 2.0.

MIPC 2.0 provides socket-oriented communication between applications in the following contexts:

• A multicore environment in which VxWorks applications run on nodes configured for asymmetric
multiprocessing (AMP) (see the VxWorks Kernel Programmer's Guide: Overview of VxWorks AMP).

• A Wind River Hypervisor environment in which applications run under guest operating systems, whether
Linux or VxWorks. (For explanations of the terminology in this paragraph, see Hypervisor-Specific
Terminology on page 3. For information on Wind River Hypervisor, see the Wind River Hypervisor User's
Guide.)

• A multicore environment in which applications run on multiple CPUs under a single VxWorks operating
system (SMP); For information on SMP, see the VxWorks Kernel Programmer's Guide: VxWorks SMP).

• A uniprocessor environment for communication between local processes.

MIPC 2.0 supports VxWorks and Linux kernel applications and Linux user-space applications. The current
release does not support MIPC user-space (RTP) applications for VxWorks.

For Linux user-space applications, MIPC 2.0 supports the standard socket API defined by the Berkeley
Software Distribution (BSD). The socket family for use with MIPC BSD sockets is AF_MIPC (see AF_MIPC
API (Linux only) on page). In this document, the MIPC BSD socket API is referred to as the
AF_MIPCsocket API or, more simply, as the AF_MIPC API or AF_MIPC.

For kernel applications, MIPC provides a socket-like API in which names are prefixed with mipc_, as in
mipc_bind() (see mipc_ API for Kernel Applications on page). To distinguish it from the AF_MIPC API,
this API is referred to as the mipc_socket API or, simply, the mipc_ API. Special features of the mipc_ API
are:

• Zero-copy buffers

 The mipc_ API provides routines for sending and receiving data in zero-copy buffers. This can result in
higher performance, since it means that MIPC does not have to copy data into and out of buffers.

• Interrupt level handling of received events

 Events received at a socket, such as connection attempts and the arrival of packets, can be handled at
interrupt level.

• Rapid transfer of short, 64-bit messages between sockets (see Express Data Transfer on page 48).

2 | Documentation

Wind River MIPC Programmer's Guide, 2.0

• Callback routines for handling events such as the following (the list is not exhaustive):

 – Nodes becoming available or unavailable on a bus (see MIPC_NODEJOIN_CALLBACK() on page 44 and
MIPC_NODELEFT_CALLBACK() on page 45).

 – Non-blocking connection attempts and socket disconnections (see MIPC_CONNECTED_CALLBACK() on
page 42 and MIPC_DISCONNECTED_CALLBACK() on page 43).

 – Arrival of zero-copy buffers at a socket. This allows you to immediately release a buffer, queue it for a MIPC
receive routine, or hold it for further processing (see MIPC_RX_CALLBACK() on page 46).

 – Queuing of a buffer in the receive queue of a socket (see MIPC_RXQUEUED_CALLBACK() on page 45.

Both the mipc_ and AF_MIPC APIs support connection-based and connectionless datagrams and
connection-based byte streams.

2.2. Terminology

A number of terms used in this document may not be familiar, or may not be used in ways that are familiar
to you. The following are some definitions and clarifications.

Nodes, CPUs, and Operating Systems

In this document, the term node applies to an instance of an operating system. In some cases there is a
one-to-one correspondence between nodes and CPUs, but often there is no such correspondence. For
example, under Wind River Hypervisor there may be two or more instances of an operating system--that is,
two or more nodes--on a single physical CPU; in a multicore SMP configuration using three CPUs, the three
CPUs together correspond to a single node.

Hypervisor-Specific Terminology

A hypervisor is a software layer that makes it possible for two or more operating systems to share the same
CPU. The hypervisor provides scheduling and access to hardware for the operating systems. An operating
system that uses the hypervisor layer is called a guest operating system. The term virtual board is used to
refer to a guest operating system and the physical resources (memory, cores, devices) allocated to it.

Wind River Hypervisor--or, Hypervisor, with a capital H--is the Wind River implementation of a hypervisor. In
a multicore environment, there can be multiple guest operating systems on any given CPU. Wind River
Hypervisor can also regulate access to resources when there are CPUs with only a single guest operating
system, as in Figure 1-1 on page 4.

3 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 Figure 1-1 : Multicore Hypervisor Configuration

In Figure 1-1 on page 4, CPU 1 has three guest operating-systems, and the remaining three CPUs each
have one guest operating system. Wind River Hypervisor allows you to configure MIPC communication
between operating systems so that, for example, all six instances of an operating system can communicate
with each other, or so that OS1, OS2, and OS3 in CPU 1 can communicate with each other, but not with
CPUs 2 through 4. For more information on Wind River Hypervisor, see the Wind River Hypervisor User's
Guide.

2.3. Architectural Overview of MIPC Communication

This section describes MIPC communication in the following environments:

• MIPC with VxWorks AMP and SMP in a multicore environment (see the next section).

• MIPC with two or more Hypervisor guest operating systems (see MIPC With Hypervisor on page 5).

2.3.1. MIPC with VxWorks AMP and SMP

Figure 1-2 on page 5 illustrates the basic framework for MIPC 2.0 communication between instances of the
VxWorks operating system in a multicore environment.

4 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 Figure 1-2 : MIPC 2.0 Communication in a VxWorks Multicore Environment

In Figure 1-2 on page 5, applications run under VxWorks with communication between them carried out
through MIPC. In the example, Node0 represents three CPUs used for symmetric multiprocessing (SMP),
with VxWorks on CPU0 (this is a requirement of VxWorks 6.x). All four nodes are part of a VxWorks AMP
configuration.

MIPC uses the Multi-OS Bus Layer (MOBL) to allocate shared memory and create communication links
between nodes. Within the MOBL, shared memory can be partitioned into multiple virtual buses--MIPC
buses. MIPC allows you to define up to 1024 such buses, with each bus given its own name and ID number.

In Figure 1-2 on page 5, there are four MIPC buses. The first MIPC bus has been assigned the name main
and ID number 0. All four nodes use this bus.

The second MIPC bus, app1_secondary, is dedicated to App1, which runs on Node0, Node1, and Node2.
Similarly, the third and fourth MIPC buses are dedicated to app2 and app3, respectively.

As the example indicates, a given node can be attached to more than one MIPC bus and multiple
applications can use the same bus (bus 0, in Figure 1-2 on page 5).

2.3.2. MIPC With Hypervisor

Figure 1-3 on page 6 illustrates the basic framework for MIPC 2.0 communication between guest operating
systems running under Wind River Hypervisor.

5 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 Figure 1-3 : MIPC 2.0 Communication Framework with Hypervisor

Figure 1-3 on page 6 shows four nodes with four guest operating systems, representing four virtual boards.
The four nodes and their guest operating systems can be on four separate CPUs, on a single CPU, or
configured on two or three CPUs.

On Node0, there are three applications. App1 is a Linux kernel application that uses the mipc_ API. App2
and App3 are both user-space applications that use the AF_MIPC API. Node1 and Node2 both have
VxWorks guest operating systems that uses the mipc_ API (the current release does not support use of the
AF_MIPC API for VxWorks). Node3 has Linux AF_MIPC versions of App2 and App3.

The applications running on the four nodes communicate with each other using MIPC, which uses shared
memory provided through the Multi-OS Bus Layer (MOBL). Within the MOBL, shared memory can be
partitioned into multiple virtual buses--MIPC buses. MIPC allows you to define up to 1024 such buses, with
each bus given its own name and ID number.

In Figure 1-3 on page 6, as in Figure 1-2 on page 5, there are four MIPC buses. The first MIPC bus has been
assigned the name main and ID number 0. All four nodes use this bus.

The second MIPC bus, app1_secondary, is dedicated to App1, which runs on Node0, Node1, and Node2.
Similarly, the third and fourth MIPC buses are dedicated to app2 and app3, respectively.

As the example indicates, a given node can be attached to more than one bus and multiple applications
can use the same bus (bus 0, in Figure 1-3 on page 6).

2.4. Restrictions on the Use of MIPC

6 | Documentation

Wind River MIPC Programmer's Guide, 2.0

The current version of MIPC is subject to the following restriction:

• MIPC 2.0 is dependent on the use of shared memory and cannot be used for communication between
networked processors.

2.5. Debugging a MIPC Target

Targets that use MIPC for communication between nodes typically do not have a full network stack and
cannot communicate directly with Workbench debugging tools on a host. When this is the case,
communication between target and host needs to go through a target system set up as a gateway between
the target and the host. For information on setting up such a gateway and debugging over MIPC, see
either the VxWorks Kernel Programmer's Guide: Configuring VxWorks for AMP or the Wind River
Hypervisor User's Guide: Understanding the Debug Shell.

2.6. Organization of This Document

The remaining chapters in this book are organized as follows:

• VxWorks: Building MIPC on page covers VxWorks build components and configuration parameters.

• Linux: Building MIPC on page covers Linux build configuration for MIPC, Linux kernel configuration
(Kconfig) components and parameters for MIPC, and loadable kernel modules and parameters for MIPC.

• mipc_ API for Kernel Applications on page describes the mipc_ API, which includes socket-like routines,
routines for the use of zero-copy buffers, callback routines, and other features. In addition the chapter
provides a sample application illustrating the use of the mipc_ API.

• AF_MIPC API (Linux only) on page describes the AF_MIPC socket API and its extensions. The API is
restricted to Linux user-space applications.

• MIPC Demo on page describes how to run the MIPC demo application.

• MIPC Show Routines (VxWorks) on page provides information about the VxWorks show routines available
with MIPC and gives sample output.

7 | Documentation

Wind River MIPC Programmer's Guide, 2.0

3. VXWORKS: BUILDING MIPC
Introduction on page 8

VxWorks Build Components for MIPC on page 8

MIPC Configuration Parameters for VxWorks on page 9

3.1. Introduction

This chapter covers MIPC 2.0 build components and configuration parameters for VxWorks.

The basic steps in building and configuring MIPC are:

1. Create a VxWorks Image Project that includes the MIPC over SM (INCLUDE_MIPC_SM) build component
(see VxWorks Build Components for MIPC on page 8, and the entry for MIPC over SM inTable 2-1 on
page 8).

 This is the only required MIPC component. There are additional components for including MIPC show
routines and a demo application (see Table 2-1 on page 8).

2. Set MIPC configuration parameters (see MIPC Configuration Parameters for VxWorks on page 9, and Table
2-2 on page 9).

3. After including and configuring all other VxWorks components, build your project.

3.2. VxWorks Build Components for MIPC

Table 2-1 on page 8 table lists the build components for VxWorks MIPC. To make it easier to use the table
as a reference, components are listed alphabetically, based on the Description field in the Workbench
Kernel Configuration Editor.010#f441fa34-6ffe-4cb1-9809-e554895ce7e7__wp161094 on page 9 Only one
of the components, MIPC over SM (INCLUDE_MIPC_SM), contains configuration parameters MIPC
Configuration Parameters for VxWorks on page 9.

Table 2-1 : Build Components Used in Configuring VxWorks for MIPC

Component

(Workbench Description and Macro Name)
Description

This BSP does not have MIPC Multi-OS
support [INCLUDE_MIPC_UNSUPPORTED]

This component appears in Workbench only if you
have created a project based on a BSP that does
not support MIPC.

MIPC demo [INCLUDE_MIPC_DEMO] Includes the MIPC demo application (see 6. MIPC
Demo on page).

8 | Documentation

Wind River MIPC Programmer's Guide, 2.0

MIPC over SM [[INCLUDE_MIPC_SM]

A required component that gives MIPC access to
shared memory. This component contains a
number of parameters (see 2.3 MIPC Configuration
Parameters for VxWorks on page 9).

MIPC Show routines [INCLUDE_MIPC_SHOW]

Includes the following command-line show routines
in the build:

mipcHelp() (see The mipcHelp Command
on page 84)

mipcShow() (see The mipcShow
Command on page 84)

mipcShowBus() (see The mipcShowBus
Command on page 84)

mipcShowNode() (see The
mipcShowNode Command on page 85)

mipcShowPort() (see The mipcShowPort
Command on page 85)

1 on page 8In the Workbench Kernel Configuration Editor, the components under a folder are listed alphabetically by
Description. Even if you use vxprj for command-line configuration, viewing the Kernel Configuration Editor may make it easier
to see the components and parameters required.

3.3. MIPC Configuration Parameters for VxWorks

All the configuration parameters for MIPC are contained in the MIPC over SM (INCLUDE_MIPC_SM) build
component (see Table 2-1 on page 8). The parameters are listed in Table 2-2 on page 9. As in the case of
build components, parameters are listed alphabetically, based on the Description field in the Workbench
Kernel Configuration Editor.

Table 2-2 : MIPC over SM (INCLUDE_MIPC_SM) Parameters

Parameter(Workbench
Description and Macro Name)

Default Value and Data Type Description

Maximum buffers per
bus [MIPC_SM_BUFFERS]

64

UINT

The number of buffers allocated
to this node on each bus used by
the node. For example, the

9 | Documentation

Wind River MIPC Programmer's Guide, 2.0

default value of 64 means that
when the node attaches to a bus,
the system allocates 64 buffers
from shared memory to the
node.

You can override the value of this
parameter for individual buses
through the buffers parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses).

This parameter affects the
allocation of shared memory. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
2.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 18.

List of available MIPC
buses [MIPC_SM_BUS_LIST]

"#main=0"

STRING

A string that lists MIPC buses
and allows you to set bus-specific
parameter values that override
the settings of parameters such
as Maximum buffers per bus
that assign node-wide default
values to all buses that the node
uses.

•

For nodes that cannot
initialize shared memory
(see the table entry for
Shared memory
initialization mode), you
need to list all buses that
the current node can use.

•

For nodes that can initialize
shared memory, you need
to list all buses available in
the system, including buses
that the current node is
never going to use. This list
defines the buses available
to any node when the
current node initializes
shared memory (see
Initializing Shared Memory
on page 17).

For additional information, the
syntax of the string, and

10 | Documentation

Wind River MIPC Programmer's Guide, 2.0

examples, see 2.3.1 MIPC Bus
Configuration String on page 15).

This parameter affects the
allocation of shared memory. If
you are making changes to the
bus configuration string in order
to rebuild the image for a node,
make sure you are familiar with
2.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 18.

Event pool size per
bus [MIPC_SM_EVENTS]

32

INT

Determines the number of
express messages (see
4.3 Express Data Transfer on
page 48) and connection
handshaking events that can be
handled on a bus on this node. In
general, set this parameter to the
maximum number of ports
expected on a bus plus the
maximum number of expected
express messages on a bus on
this node.

You can override the value of this
parameter for individual buses
through the events parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

This parameter affects the
allocation of shared memory. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
2.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 18.

Heartbeat
rate [MIPC_SM_HEARTBEAT
_PERIOD]

50

UINT

The rate, in milliseconds, at
which the node updates its
heartbeat count in shared
memory, letting other nodes
know that it is active on a bus. It
also indirectly determines the
rate at which the node polls
shared memory for the hearbeats

11 | Documentation

Wind River MIPC Programmer's Guide, 2.0

of other nodes in order to find
out which nodes are currently
active on a bus.

All nodes must be set to the
same heartbeat rate.

This parameter affects the way
shared memory is initialized. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
2.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 18.

Shared memory initialization
mode [MIPC_SM_INIT_MOD
E]

1

UINT

Determines whether the current
node initializes shared memory at
start up. There are three options:

•
0 (WAIT_FOR_INIT)--Do
not initialize.

•
1 (CAN_INIT)-- Initialize, if
shared memory has not
already been initialized.

•
2 (ALWAYS_INIT)--Always
initialize at start up.

For more information about the
individual options, see
2.3.2 Initializing Shared Memory
on page 17.

Maximum buffer size per
bus [MIPC_SM_MTU]

1520

UINT

Specifies the maximum size, in
bytes, of the buffers this node
can use for transmission on a
bus.

You can override the value of this
parameter for individual buses
through the mtu parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

This parameter affects the
allocation of shared memory. If
you are changing the current
parameter value in order to
rebuild the image for a node,

12 | Documentation

Wind River MIPC Programmer's Guide, 2.0

make sure you are familiar with
2.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 18.

Maximum nodes per
bus [MIPC_SM_NODES]

2

UINT

Specifies the maximum number
of nodes a bus can support.

You can override the value of this
parameter for individual buses
through the nodes parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

This parameter affects the
allocation of shared memory. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
2.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 18.

Interrupt request
line [MIPC_SM_NODE_IRQ]

[Default depends on BSP]

INT

The interrupt request line this
node uses to detect incoming
events on MIPC buses.

Do not change the default value.

The default value instructs MIPC
to use the interrupt line specified
by the BSP for the current
project.

Maximum ports per
bus [MIPC_SM_PORTS]

32

UINT

The maximum number of ports
this node can have on a bus.

You can override the value of this
parameter for individual buses
through the ports parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

This parameter affects the
allocation of shared memory. If
you are changing the current

13 | Documentation

Wind River MIPC Programmer's Guide, 2.0

parameter value in order to
rebuild the image for a node,
make sure you are familiar with
2.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 18.

Quality of service used by
buses [MIPC_SM_QOS]

41

INT

The processing mode a bus uses
to handle incoming events, such
as the arrival of incoming buffers.
There are three modes. The
following gives a brief
description of each node. For
more detailed information, see
2.3.4 QoS Processing Modes for
Incoming Events on page 18.

To specify a QoS processing
mode, enter an integer, as
follows:

• N > 0 (ISR deferred mode)

The interrupt handler
schedules responses (such
as MIPC callbacks--see
mipc_ API Callback
Routines on page 41) to
events at task level N,
rather than handling the
events in an interrupt
service routine (ISR).

• 0 (ISR mode)

ISRs respond to events and
invoke callback routines at
interrupt level.

• -1 (user mode)

For use only with kernel
space applications. MIPC
detects incoming events
only when instructed to by a
client application.

You can override the value of this
parameter for individual buses
through the qos parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

14 | Documentation

Wind River MIPC Programmer's Guide, 2.0

Receive task stack
size [MIPC_SM_RXTASK_STA
CK]

4000

UINT

For buses operating in ISR
deferred mode (see the table
entry for MIPC_SM_QOS), the
size, in bytes, of the stack
available to tasks processing
incoming events. If an application
creates sockets that have
callback routines that use a lot of
stack space, it may be necessary
to increase the parameter value
above its default value.

Maximum number of
sockets [MIPC_SM_SOCKETS
]

-1

INT

The maximum number of MIPC
sockets that can simultaneously
exist on this node.

The default value instructs MIPC
to reserve enough memory to
support a socket on every
available port on each of the
node's buses. For example, if
there are three buses, each of
which can have 32 ports, MIPC
will reserve enough memory for
96 sockets.

Shared memory base
address
[MIPC_SM_SYSTEM_POOL_BA
SE]

[Default depends on BSP]

INT

The base address of the shared-
memory region for MIPC.

Do not change the default value.

The default value instructs MIPC
to use the shared-memory base
address specified by the BSP for
the current project.

Shared memory
size [MIPC_SM_SYSTEM_PO
OL_SIZE]

[Default depends on BSP]

INT

The size of the shared memory
region used by MIPC.

Do not change the default value.

The default value instructs MIPC
to use the shared-memory base
address specified by the BSP for
the current project.

3.3.1. MIPC Bus Configuration String

When you configure a MIPC node, the List of available MIPC buses (MIPC_SM_BUS_LIST) parameter
requires you to specify a bus configuration string that lists MIPC buses and allows you to set bus-specific

15 | Documentation

Wind River MIPC Programmer's Guide, 2.0

parameter values. The bus-specific values override the settings of parameters such as Maximum ports per
bus (MIPC_SM_PORTS) that establish default values for all buses used by a node.

• For nodes that cannot initialize shared memory (see the entry for Shared memory initialization mode in
Table 2-2 on page 9), you need to list all buses that the current node can use.

• For nodes that can initialize shared memory, you need to list all buses available in the system, including
buses that the current node is never going to use. This list defines the buses available to a node when the
current node initializes shared memory (see Initializing Shared Memory on page 17).

• The bus configuration string for a node can only specify bus-specific parameter values for its own node.

Syntax of the Bus Configuration String

The syntax of the bus configuration string is:

 #busname=busid[,param=value,param=value,...]#busname=busid[,param=value,param=value,...]...

where

• busname is the name of the bus.

• busid is an integer ID for the bus.

 Bus names and IDs must be consistent across nodes.

• param is one of the bus-specific parameters in Table 2-3 on page 15. Table 2-3 on page 15 lists bus-specific
parameters and gives cross-references to the corresponding node-wide parameters that they override.)

• value is a bus-specific parameter value.

Table 2-3 : Bus-Specific Parameters

Bus-Specific
Parameter

Node-Wide Bus Parameter

activeonbus

[No corresponding node-wide bus parameter.]

Determines whether a node can use (be active on) a bus:

 1: The node can use the bus.

 0: The node cannot use on the bus.

By default, activeonbus is 1.

Typically, you only set activeonbus to 0 when a node that always initializes shared
memory does not itself use a given bus (see 2.3.2 Initializing Shared Memory on
page 17).

16 | Documentation

Wind River MIPC Programmer's Guide, 2.0

buffers Maximum buffers per bus [MIPC_SM_BUFFERS] on page 9

events Event pool size per bus [MIPC_SM_EVENTS] on page 11

mtu Maximum buffer size per bus [MIPC_SM_MTU] on page 12

nodes Maximum nodes per bus [MIPC_SM_NODES] on page 13

ports Maximum ports per bus [MIPC_SM_PORTS] on page 13

qos Quality of service used by buses [MIPC_SM_QOS] on page 14

Configuration String Examples

The following is an example of a configuration string that lists buses, but does not set any bus-specific
parameters:

#main=0#app1_secondary=1#app2_secondary=2#app3_secondary=3

The following example sets bus-specific parameters for four buses:

#main=0,buffers=32,events=48,ports=64#app1_secondary=1#app2_secondary=2#app3_secondary=3,buffers=24

In the example, bus main is allocated 32 buffers and bus app3_secondary is allocated 24 buffers on the
current node. The remaining two buses are allocated the number of buffers set in the Maximum buffers
per bus (MIPC_SM_BUFFERS) parameter. In addition, bus main is configured for 48 events and 64 ports.
All other buses are configured for whatever is set in the Event pool size per bus (MIPC_SM_EVENTS) and
Maximum ports per bus (MIPC_SM_PORTS) parameters.

3.3.2. Initializing Shared Memory

Before any MIPC node can start communicating with other nodes, shared memory needs to be initialized.
Initialization is performed by a single node. The Shared memory initialization mode
(MIPC_SM_INIT_MODE) parameter, allows you to designate a specific node for shared-memory
initialization or to specify multiple nodes any of which can initialize shared memory if it is started first. The
parameter provides the following initialization options:

• 0 (WAIT_FOR_INIT)--The node never initializes shared memory

• 1 (CAN_INIT)-- The node initializes shared memory if shared memory hasn't already been initialized when it
starts.

 This allows a node that can initialize shared memory to reboot without requiring all other nodes to reboot
with it (see the next option, ALWAYS_INIT).

• 2 (ALWAYS_INIT)--The node always initializes shared memory.

 Use this option for a node only if:

17 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 – This is always the first node up that is capable of initializing shared memory (all other nodes should be
designated WAIT_FOR_INIT)

 – It is acceptable that whenever this node reboots, it forces all other nodes to to reboot.

3.3.3. Changing Parameters that Affect Shared Memory When Other Nodes are
Running

A number of MIPC parameters affect shared memory (see Parameters that affect shared memory on
page 18). If you find that you need to change the value of one or more of these parameters for a node that
is currently active on a bus:

• Stop the node, make the changes, and re-image the node.

• Before restarting the node, stop all other nodes and then restart nodes according to your standard startup
procedure.

If you re-image a node after making changes that affect shared memory and start it while other nodes are
still running, it forces the nodes to reboot. This can have unwanted consequences.

Parameters that affect shared memory

The following parameters affect shared memory:

• List of available MIPC buses (MIPC_SM_BUS_LIST)

 The number of buses that you define in the bus configuration string affects the allocation of shared
memory. In addition, the following parameters within the configuration string have an effect on shared-
memory allocation:

 – buffers

 – events

 – mtu

 – nodes

 – ports

• Maximum buffers per bus (MIPC_SM_BUFFERS)

• Maximum buffer size per bus (MIPC_SM_MTU)

• Maximum nodes per bus (MIPC_SM_NODES)

• Maximum ports per bus (MIPC_SM_PORTS)

• Event pool size per bus (MIPC_SM_EVENTS)

• Heartbeat rate (MIPC_SM_HEARTBEAT_PERIOD)

• Shared memory base address (MIPC_SM_SYSTEM_POOL_BASE)

• Shared memory size (MIPC_SM_SYSTEM_POOL_SIZE)

3.3.4. QoS Processing Modes for Incoming Events

18 | Documentation

Wind River MIPC Programmer's Guide, 2.0

The Quality of service used by buses (MIPC_SM_QOS) parameter requires you to specify a Quality of
Service (QoS) processing mode for incoming events such as connection attempts and incoming buffers.
These events trigger internal callbacks or, if they have been implemented, MIPC callbacks routines (see
mipc_ API Callback Routines on page 41). There are three processing modes. To specify a mode, enter an
integer, as follows:

• N > 0 (ISR deferred mode)

 The interrupt handler schedules responses (such as MIPC callbacks--see mipc_ API Callback Routines on
page 41) to events at task level rather than handling the events in an interrupt service routine (ISR). The
worker task that handles an event is created with a VxWorks task priority level of N and a stack size of
MIPC_SM_NODE_RXTASK_STACK bytes (see Table 2-2 on page 9).

• 0 (ISR mode)

 ISRs respond to events and invoke callback routines at interrupt level. Do not choose this option if any of
the callbacks that might be called contain blocking operations.

 This processing mode is not recommended for sustained levels of high throughput.

• -1 (user mode)

 For use only with kernel space applications. MIPC detects incoming events only when instructed to by a
client application. This mode allows an application to poll for bus activity, rather than using interrupts.

19 | Documentation

Wind River MIPC Programmer's Guide, 2.0

4. LINUX: BUILDING MIPC
Introduction on page 20

Including MIPC in a Linux Build Configuration on page 20

Configuring the MIPC Kconfig Component and Its Parameters on page 21

Loading the MIPC Kernel Modules on page 30

4.1. Introduction

This chapter covers including MIPC in a Linux build and loading MIPC kernel modules and their
configuration parameters.

To include MIPC in a Linux build you need to:

1. Configure your build for MIPC (see Including MIPC in a Linux Build Configuration on page 20).

2. Configure the MIPC kernel configuration (Kconfig) component (see Configuring the MIPC Kconfig
Component and Its Parameters on page 21).

3. Execute make.

At run time:

4. Load the MIPC kernel modules and set kernel module configuration parameters (see Loading the MIPC
Kernel Modules on page 30).000#3f2fa1c1-5306-4e33-b26c-7189555ee44c__wp158862 on page 20

1 on page 20If you are going to include the MIPC Serial Device (MSD) feature in your project, you need to make entries for
MSD devices in your target's file system before you load MIPC (see VxWorks Kernel Programmer's Guide: MIPC Serial Device
(MSD)).

4.2. Including MIPC in a Linux Build Configuration

You can build Linux to include MIPC from Workbench or from the command line. In either case, you need to
include the wrll-multicore layer and the feature/mipc template in your build, as follows:

Workbench:

1. Create a new Linux Platform Project and enter a name for the project, then click Next.

 This brings up the Configuration options window.

2. In the Configuration options window, enter required settings and then click Advanced.

 This displays the Layers box and the Templates and Profiles box.

20 | Documentation

Wind River MIPC Programmer's Guide, 2.0

3. Click Add, next to the Layers box.

 This allows you to browse to the location of the wrll-multicore layer:

 > layers > wrll-multicore

4. Select wrll-multicore and click OK.

 The Layers box now displays the wrll-multicore layer.

5. Click reload.

6. Click Template... next to the Templates and Profiles box.

 This displays the Add Templates dialog.

7. Scroll down the template list, check feature/mipc and click OK.

 This returns you to the Configuration options window, with feature/mipc displayed in the Templates and
Profiles box.

8. Click Finish.

Command Line

1. Configure your basic settings for kernel, file system, and tool set; set the --with-layer option to wrll-
multicore, and add the feature/mipc template as in the following example:

 installDir/wrlinux-3.0/wrlinux/configure --enable-rootfs= glibc_small+debug --enable-board=fsl_8572ds --enable-kernel=standard --with-layer=wrll-multicore --with-template=feature/mipc

 Note that you need to set the --enable-board argument to match the BSP for your project.

4.3. Configuring the MIPC Kconfig Component and Its Parameters

There is one kernel configuration (Kconfig) component for MIPC, which you can configure either through
Workbench or from the command line with the linux.menuconfig utility: Multi-OS Inter-Processor
Communication (MULTIOS_IPC). The component is included in a MIPC project by default. The path to the
component is:

 Linux Kernel Configuration > Device Drivers > Multi-OS Inter-Processor Communication

Table 3-1 on page 21 lists the component's parameters.

Table 3-1 : MIPC Kconfig Parameters

Parameter(Workbench
Description and Macro Name)

Default Value and Data Type Description

21 | Documentation

Wind River MIPC Programmer's Guide, 2.0

Maximum buffers per
bus [MIPC_SM_BUFFERS]

64

UINT

The number of buffers allocated
to this node on each bus used by
the node. For example, the
default value of 64 means that
when the node attaches to a bus,
the system allocates 64 buffers
from shared memory to the
node.

You can override the value of this
parameter for individual buses
through the buffers parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses).

This parameter affects the
allocation of shared memory. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
3.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 29.

List of available MIPC
buses [MIPC_SM_BUS_LIST]

"#main=0"

STRING

A string that lists MIPC buses
and allows you to set bus-specific
parameter values that override
the settings of parameters such
as Maximum buffers per bus
that assign node-wide default
values to all buses that the node
uses.

•

For nodes that cannot
initialize shared memory
(see the table entry for
Shared memory
initialization mode), you
need to list all buses that
the current node can use.

•

For nodes that can initialize
shared memory, you need
to list all buses available in
the system, including buses
that the current node is
never going to use. This list
defines the buses available
to any node when the
current node initializes
shared memory (see
Initializing Shared Memory
on page 28).

22 | Documentation

Wind River MIPC Programmer's Guide, 2.0

For additional information, the
syntax of the string, and
examples, see 3.3.1 MIPC Bus
Configuration String on page 27).

This parameter affects the
allocation of shared memory. If
you are making changes to the
bus configuration string in order
to rebuild the image for a node,
make sure you are familiar with
3.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 29.

Event pool size per
bus [MIPC_SM_EVENTS]

32

INT

Determines the number of
express messages (see
4.3 Express Data Transfer on
page 48) and connection
handshaking events that can be
handled on a bus on this node. In
general, set this parameter to the
maximum number of ports
expected on a bus plus the
maximum number of expected
express messages sent on a bus
by this node.

You can override the value of this
parameter for individual buses
through the events parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

This parameter affects the
allocation of shared memory. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
3.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 29.

Heartbeat ratex
[MIPC_SM_HEARTBEAT_PERIO
D]

50

UINT

The rate, in milliseconds, at
which the node updates its
heartbeat count in shared
memory, letting other nodes
know that it is active on a bus. It

23 | Documentation

Wind River MIPC Programmer's Guide, 2.0

also indirectly determines the
rate at which the node polls
shared memory for the hearbeats
of other nodes in order to find
out which nodes are currently
active on a bus.

All nodes must be set to the
same heartbeat rate.

This parameter affects the way
shared memory is initialized. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
3.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 29.

Shared memory initialization
mode [MIPC_SM_INIT_MOD
E]

1

UINT

Determines whether the current
node initializes shared memory at
start up. There are three options:

•
0 (WAIT_FOR_INIT)--Do
not initialize.

•
1 (CAN_INIT)-- Initialize, if
shared memory has not
already been initialized.

•
2 (ALWAYS_INIT)--Always
initialize at start up.

For more information about the
individual options, see
3.3.2 Initializing Shared Memory
on page 28.

Maximum buffer size per
bus [MIPC_SM_MTU]

1520

UINT

Specifies the maximum size, in
bytes, of the buffers this node
can use for transmission on a
bus.

You can override the value of this
parameter for individual buses
through the mtu parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

This parameter affects the
allocation of shared memory. If

24 | Documentation

Wind River MIPC Programmer's Guide, 2.0

you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
3.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 29.

Maximum nodes per
bus [MIPC_SM_NODES]

2

UINT

Specifies the maximum number
of nodes a bus can support.

You can override the value of this
parameter for individual buses
through the nodes parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

This parameter affects the
allocation of shared memory. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
3.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 29.

Maximum ports per
bus [MIPC_SM_PORTS]

32

UINT

The maximum number of ports
this node can have on a bus.

You can override the value of this
parameter for individual buses
through the ports parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

This parameter affects the
allocation of shared memory. If
you are changing the current
parameter value in order to
rebuild the image for a node,
make sure you are familiar with
3.3.3 Changing Parameters that
Affect Shared Memory When
Other Nodes are Running on
page 29.

25 | Documentation

Wind River MIPC Programmer's Guide, 2.0

Quality of service used by
buses [MIPC_SM_QOS]

1

INT

The processing mode a bus uses
to handle incoming events, such
as the arrival of incoming buffers.
There are three modes. The
following gives a brief
description of each node. For
more detailed information, see
3.3.4 QOS Processing Modes for
Incoming Events on page 30.

To specify a QoS processing
mode, enter an integer, as
follows:

• 1 (ISR deferred mode)

The interrupt handler
schedules responses (such
as MIPC callbacks--see
mipc_ API Callback
Routines on page 41) to
events using a Linux kernel
work queue, rather than
handling the events in an
interrupt service routine
(ISR).

• 0 (ISR mode)

ISRs respond to events and
invoke callback routines at
interrupt level.

• -1 (user mode)

For use only with kernel
space applications. MIPC
detects incoming events
only when instructed to by a
client application.

You can override the value of this
parameter for individual buses
through the qos parameter of
the bus configuration string (see
the table entry for List of
available MIPC buses
(MIPC_SM_BUS_LIST).

Maximum number of
sockets [MIPC_SM_SOCKETS
]

-1

INT

The maximum number of MIPC
sockets that can simultaneously
exist on this node.

The default value instructs MIPC
to reserve enough memory to
support a socket on every
available port on each of the

26 | Documentation

Wind River MIPC Programmer's Guide, 2.0

node's buses. For example, if
there are three buses, each of
which can have 32 ports, MIPC
will reserve enough memory for
96 sockets.

4.3.1. MIPC Bus Configuration String

When you configure a MIPC node, the List of available MIPC buses (MIPC_SM_BUS_LIST) parameter
requires you to specify a bus configuration string that lists MIPC buses and allows you to set bus-specific
parameter values. The bus-specific values override the settings of parameters such as Maximum ports per
bus (MIPC_SM_PORTS) that establish default values for all buses used by a node.

• For nodes that cannot initialize shared memory (see the entry for Shared memory initialization mode in
Table 3-1 on page 21), you need to list all buses that the current node can use.

• For nodes that can initialize shared memory, you need to list all buses available in the system, including
buses that the current node is never going to use. This list defines the buses available to a node when the
current node initializes shared memory (see Initializing Shared Memory on page 28).

• The bus configuration string for a node can only specify bus-specific parameter values for its own node.

Syntax of the MIPC Bus Configuration String

The syntax of the MIPC bus configuration string is:

 #busname=busid[,param=value,param=value,...]#busname=busid[,param=value,param=value,...]...

where

• busname is the name of the bus.

• busid is an integer ID for the bus.

 Bus names and IDs must be consistent across nodes.

• param is one of the bus-specific parameters in Table 3-2 on page 27. Table 3-2 on page 27 lists bus-specific
parameters and gives cross-references to the corresponding node-wide parameters that they override.

Table 3-2 : Bus-Specific Parameters

Bus-Specific
Parameter

Node-Wide Bus Parameter

activeonbus [No corresponding node-wide bus parameter.]

Determines whether a node can use (be active on) a bus:

27 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 1: The node can use the bus.

 0: The node cannot use on the bus.

By default, activeonbus is 1.

Typically, you only set activeonbus to 0 when a node that always initializes shared
memory does not itself use a given bus (see 3.3.2 Initializing Shared Memory on
page 28).

buffers Maximum buffers per bus [MIPC_SM_BUFFERS] on page 21

events Event pool size per bus [MIPC_SM_EVENTS] on page 23

mtu Maximum buffer size per bus [MIPC_SM_MTU] on page 24

nodes Maximum nodes per bus [MIPC_SM_NODES] on page 25

ports Maximum ports per bus [MIPC_SM_PORTS] on page 25

qos Quality of service used by buses [MIPC_SM_QOS] on page 25

• value is a bus-specific parameter value.

Examples

The following is an example of a configuration string that lists buses, but does not set any bus-specific
parameters:

#main=0#app1_secondary=1#app2_secondary=2#app3_secondary=3

The following example sets bus-specific parameters for four buses:

#main=0,buffers=32,events=48,ports=64#app1_secondary=1#app2_secondary=2#app3_secondary=3,buffers=24

Based on the example, bus main is allocated 32 buffers and bus app3_secondary is allocated 24 buffers on
the current node. The remaining two buses are allocated the number of buffers set in the Maximum
buffers per bus (MIPC_SM_BUFFERS) parameter. In addition, bus main is configured for 48 events and 64
ports. All other buses are configured for whatever is set in the Event pool size per bus
(MIPC_SM_EVENTS) and Maximum ports per bus (MIPC_SM_PORTS) parameters.

4.3.2. Initializing Shared Memory

Before any MIPC node can start communicating with other nodes, shared memory needs to be initialized.
Initialization is performed by a single node. The Shared memory initialization mode

28 | Documentation

Wind River MIPC Programmer's Guide, 2.0

(MIPC_SM_INIT_MODE) parameter, allows you to designate a specific node for shared-memory
initialization or to specify multiple nodes any of which can initialize shared memory if it is started first. The
parameter provides the following initialization options:

• 0 (WAIT_FOR_INIT)--The node never initializes shared memory

• 1 (CAN_INIT)-- The node initializes shared memory if shared memory hasn't already been initialized when it
starts.

 This allows a node that can initialize shared memory to reboot without requiring all other nodes to reboot
with it (see the next option, ALWAYS_INIT).

• 2 (ALWAYS_INIT)--The node always initializes shared memory.

 Use this option for a node only if:

 – This is always the first node up that is capable of initializing shared memory (all other nodes should be
designated WAIT_FOR_INIT)

 – It is acceptable that whenever this node reboots, it forces all other nodes to to reboot.

4.3.3. Changing Parameters that Affect Shared Memory When Other Nodes are
Running

A number of MIPC parameters affect shared memory (see Parameters that affect shared memory on
page 29). If you find that you need to change the value of one or more of these parameters for a node that
is currently active on a bus:

• Stop the node, make the changes, and re-image the node.

• Before restarting the node, stop all other nodes and then restart nodes according to your standard startup
procedure.

If you re-image a node after making changes that affect shared memory and start it while other nodes are
still running, it forces the nodes to reboot. This can have unwanted consequences.

Parameters that affect shared memory

The following parameters affect shared memory:

• List of available MIPC buses (MIPC_SM_BUS_LIST)

 The number of buses that you define in the bus configuration string affects the allocation of shared
memory. In addition, the following parameters within the configuration string have an effect on shared-
memory allocation:

 – buffers

 – events

 – mtu

 – nodes

 – ports

• Maximum buffers per bus (MIPC_SM_BUFFERS)

29 | Documentation

Wind River MIPC Programmer's Guide, 2.0

• Maximum buffer size per bus (MIPC_SM_MTU)

• Maximum nodes per bus (MIPC_SM_NODES)

• Maximum ports per bus (MIPC_SM_PORTS)

• Event pool size per bus (MIPC_SM_EVENTS)

• Heartbeat rate (MIPC_SM_HEARTBEAT_PERIOD)

• Shared memory base address (MIPC_SM_SYSTEM_POOL_BASE)

• Shared memory size (MIPC_SM_SYSTEM_POOL_SIZE)

4.3.4. QOS Processing Modes for Incoming Events

The Quality of service used by buses (MIPC_SM_QOS) parameter requires you to specify a Quality of
Service (QoS) processing mode for incoming events such as connection attempts and incoming buffers.
These events trigger internal callbacks or, if they have been implemented, MIPC callbacks routines (see
mipc_ API Callback Routines on page 41). There are three processing modes. To specify a mode, enter an
integer, as follows:

• 1 (ISR deferred mode)

 The interrupt handler schedules responses (such as MIPC callbacks--see mipc_ API Callback Routines on
page 41) to events at task level rather than handling the events in an interrupt service routine (ISR).

• 0 (ISR mode)

 ISRs respond to events and invoke callback routines at interrupt level. Do not choose this option if any of
the callbacks that might be called contain blocking operations.

 This processing mode is not recommended for sustained levels of high throughput.

• -1 (user mode)

 For use only with kernel space applications. MIPC detects incoming events only when instructed to by a
client application. This mode allows an application to poll for bus activity, rather than using interrupts.

4.4. Loading the MIPC Kernel Modules

When you build MIPC, it contains two loadable kernel modules (LKMs):

• multios_ipc_lkm-prop.ko

 This module contains proprietary MIPC code and must be loaded first. It contains a number of
configuration parameters for MIPC (see Parameters in the multios_ipc_lkm-prop.ko Kernel Module on
page 31).

• multios_ipc_lkm-gpl.ko

 This module contains open-source General Public License (GPL) code. It contains configuration parameters
for the MIPC Network Device (MND) and MIPC Serial Device (MSD) features (see Parameters in the
multios_ipc_lkm-prop.ko Kernel Module on page 32).

30 | Documentation

Wind River MIPC Programmer's Guide, 2.0

If you use the mipcload command to load the modules (see Loading the MIPC Kernel Modules and Setting
Parameters with the mipcload Command on page 33), you do not need to specify the module names and it
automatically loads both modules in the correct order.

 NOTE: If you are going to be using the MIPC Serial Device (MSD) feature, you need to make
entries for MSD devices in your target's file system before you load MIPC (see Wind River Linux Guest
OS for Hypervisor 1.1 Programmer's Guide: MIPC Serial Device (MSD)).

4.4.1. Parameters in the multios_ipc_lkm-prop.ko Kernel Module

 Each of the parameters in the multios_ipc_lkm-prop.ko kernel module corresponds to one of the Konfig
parameters listed in Table 3-1 on page 21 and functions in the same way. Table 3-3 on page 31 gives cross-
references from the kernel-module parameters to the Kconfig parameters.

Table 3-3 : Correspondence between MIPC Target Load-Time Parameters and Kconfig
Parameters

Load-Time Parameter Cross-Reference to Kconfig Parameter

buslist List of available MIPC buses [MIPC_SM_BUS_LIST] on page 22

buffers Maximum buffers per bus [MIPC_SM_BUFFERS] on page 21

mtu Maximum buffer size per bus [MIPC_SM_MTU] on page 24

nodes Maximum nodes per bus [MIPC_SM_NODES] on page 25

ports Maximum ports per bus [MIPC_SM_PORTS] on page 25

events Event pool size per bus [MIPC_SM_EVENTS] on page 23

qos Quality of service used by buses [MIPC_SM_QOS] on page 25

Maximum number of sockets [MIPC_SM_SOCKETS] on page 26

31 | Documentation

Wind River MIPC Programmer's Guide, 2.0

sockets

initmode Shared memory initialization mode [MIPC_SM_INIT_MODE] on page 24

heartbeat Heartbeat ratex [MIPC_SM_HEARTBEAT_ PERIOD] on page 23

4.4.2. Parameters in the multios_ipc_lkm-prop.ko Kernel Module

The multios_ipc_lkm-gpl.ko kernel module contains parameters for both the MIPC Network Device (MND)
and MIPC Serial Device (MSD) features. Table1 lists the MND parameters. Table2 lists the MSD parameters.
For more information on these parameters, see Wind River Linux Guest OS for Hypervisor 1.1
Programmer's Guide: MND: Simulating an Ethernet Connection Between Nodes) and Wind River Linux
Guest OS for Hypervisor 1.1 Programmer's Guide: MIPC Serial Device (MSD).

MND Parameters

Table 3-4 : MND Load-Time Parameters

MND Load-Time
Parameters

Description

mnd_watchdog_timeo The number of jiffies to wait for a notification that a send operation has
completed. Default: 5.

mnd_napi_weight The maximum number of packets to process in a poll. Default: 64.

mnd_mtu The maximum size, in bytes, of the data portion (consisting of Ethernet
frames) of an MND message. Default: 1520.

mnd_tx_bufs The maximum number of transmission buffers allocated to MIPC control
and data sockets. Default: -1.

mnd_rx_bufs The number of receive buffers allocated to MIPC control and data sockets.
Default: -1.

mnd_cfg_str A configuration string that assigns one or more MND devices to the
current node. Default: "#unit=0,segment=0,port=23,bus=bus0".

32 | Documentation

Wind River MIPC Programmer's Guide, 2.0

MSD Parameters

Table 3-5 : MSD Load-Time Parameters

Load-Time Parameter Description

msd_tx_bufs The number of transmission buffers of the underlying MIPC socket (MSD uses a
single socket per bus). Default: 8.

msd_mtu The maximum size, in bytes, of the data that follows the MSD header. Default: -1.

msd_num_devs The number of MSDs to create on this CPU. Default: 1.

msd_cfg_str A configuration string that pairs each local MSD with a remote MSD. Default:
"#auto=y bus=main".

4.4.3. Loading the MIPC Kernel Modules and Setting Parameters with the
mipcload Command

To load the MIPC kernel modules and set their parameters, you can use the mipcload command from the
command line.020#4289d796-fe0e-493e-8a4b-e8ff4fdfdb57__wp163619 on page 33 The syntax for loading
the kernel modules and setting parameters is:

 mipcload [param1=value] [param2=value] ...[paramN=value]

If value is a string value, it must be enclosed in quotes, and no spaces are allowed. parameters listed in the
string must be separated by commas. The following example sets the maximum number of nodes per bus
to 8, the maximum number of ports to 48, and sets the maximum number of buffers on a bus named main
to 100.

 mipcload nodes=8 ports=48 buslist="#main=0,buffers=100"

If you use the mipcload command by itself, it loads the MIPC kernel modules and uses the configuration
settings specified at build time.020#4289d796-fe0e-493e-8a4b-e8ff4fdfdb57__wp163531 on page 34

Note that you cannot use the rmmod command to unload the MIPC kernel modules.

1 on page 33If your project includes MSD, before you load the MIPC kernel modules, you need to make entries for MSD
devices in your target's file system (see Wind River Linux Guest OS for Hypervisor 1.1 Programmer's Guide: MIPC Serial Device
(MSD)).

33 | Documentation

Wind River MIPC Programmer's Guide, 2.0

2 on page 33If you have done a custom installation that may have altered the path to the MIPC kernel modules, you can use
the insmod command (see the insmod man page) and specify the full path to the modules.

34 | Documentation

Wind River MIPC Programmer's Guide, 2.0

5. MIPC_ API FOR KERNEL APPLICATIONS
Introductions on page 35

The mipc_ API on page 35

Express Data Transfer on page 48

mipc_ API Code Examples on page 49

mipc_ API Sample Application (VxWorks) on page 64

5.1. Introductions

For kernel applications, MIPC provides the mipc_ API. Two useful features of the mipc_ API are zero-copy
buffers for sending messages from one node to another and express data transfer, for sending short
messages between sockets (see Express Data Transfer on page 48)

The routines in the mipc_ API can be divided into three main groups:

• Routines that correspond to standard socket API calls (see mipc _Socket API on page 37).

 The mipc_ API provides functions for opening and closing sockets, creating ports for services and binding
them to sockets, and for sending and receiving data on a socket.

• Extensions to the standard socket API for handling zero-copy buffers and performing other operations (see
mipc_ Routines Outside of the Socket API on page 40).

• Callbacks for user implementation (see mipc_ API Callback Routines on page 41).

 The callbacks are for handling events such as the establishment or loss of a connection, availability of other
nodes for communication, and availability of buffers for transmitting messages.

This chapter describes the mipc_ API, gives code examples showing the use of individual routines (see
mipc_ API Code Examples on page 49), and provides a sample application (see mipc_ API Sample
Application (VxWorks) on page 64).

5.2. The mipc_ API

This section presents the mipc_ API. It is organized as follows:

 mipc_ API Types on page 35mipc _Socket API on page 37mipc_ Routines Outside of the Socket API on
page 40mipc_ API Callback Routines on page 41Validating Parameters in mipc_ API Routines on
page 47mipc_ API Error Codes on page 48

In all code that makes use of the mipc_ API, you need to include the mipc.h header file, as follows:

 #include <multios_ipc/mipc.h>

5.2.1. mipc_ API Types

The mipc_ API defines the following data types:

35 | Documentation

Wind River MIPC Programmer's Guide, 2.0

• mipc_sockaddr structure (see The mipc_sockaddr Structure on page 36)

• MIPC_ZBUFFER (see The MIPC_ZBUFFER Structure on page 36)

• mipc_statsstructure (see The mipc_stats Structure on page 36)

• Type definitions for callback routines.

 MIPC provides a number of type definitions for callbacks that are invoked through the mipc_setsockopt()
routine. For the individual type definitions, refer directly to the API reference entry for mipc_setsockopt().
For information on the callbacks see mipc_ API Callback Routines on page 41.

The mipc_sockaddr Structure

The definition of the mipc_sockaddr structure is:

 struct mipc_sockaddr {

 unsigned short family; /* family number (MIPC_AF) */

 unsigned short busNum; /* bus number */

 unsigned short nodeNum; /* node number */

 unsigned short portNum; /* port number */

 };

where

 family is the socket address family for the mipc_ API: MIPC_AF

 busNum is the number of the bus that the socket is bound to.

 nodeNum is the number of the node that the socket is bound to.

 portNum is the number of the port that the socket is bound to.

For use with the mipc_bind() routine, there are macro definitions for the busNum, nodeNum, and portNum
fields (see Macros for Fields in the mipc_sockaddr Structure When Used with mipc_bind() on page 39).

The MIPC_ZBUFFER Structure

The definition of the MIPC_ZBUFFER structure is:

 typedef void * MIPC_ZBUFFER

MIPC_ZBUFFER is used as an opaque handle to a zero-copy buffer (received or locally allocated) in MIPC
zero-copy routines.

36 | Documentation

Wind River MIPC Programmer's Guide, 2.0

The mipc_stats Structure

The definition of the mipc_stats structure is:

typedef struct

{

 uint32_t bufs_sent; /* # buffers sent */

 uint32_t bufs_rcvd; /* # buffers received */

 uint32_t bytes_sent; /* # buffer bytes sent */

 uint32_t bytes_rcvd; /* # buffer bytes received */

 uint32_t bufs_allocated; /* # buffers allocated */

 uint32_t bufs_freed; /* # buffers freed */

 uint32_t buf_cong_wait; /* buffer congestion (blocking) */

 uint32_t buf_cong_no_wait; /* buffer congestion (non-blocking) */

 uint32_t buf_avail_sent; /* buffer available events sent */

 uint32_t buf_avail_rcvd; /* buffer available events received */

 uint32_t express_msgs_sent; /* express messages sent */

 uint32_t express_msgs_rcvd; /* express messages received */

 uint32_t buffer_not_avail; /* couldn't get buffer from packet pool */

 uint32_t event_not_avail; /* couldn't get event from event pool */

 uint32_t interrupts_sent; /* # interrupts sent */

 uint32_t interrupts_rcvd; /* # interrupts received */

 uint32_t interrupts_deferred; /* # invocations of deferred work thead */

 uint32_t sockets_bound; /* # sockets bound to bus */

 uint32_t sockets_closed; /* # sockets closed after binding to bus */

 uint32_t socket_rx_queue_err; /* # socket rx queue errors (full q) */

};

The mipc_stats structure receives values returned by the mipc_getstats() routine.

5.2.2. mipc _Socket API

This section lists the routines that make up the mipc_ socket API. In writing applications that use the API,
the following points need to be considered:

37 | Documentation

Wind River MIPC Programmer's Guide, 2.0

• The mipc_ API does not provide a mechanism for preventing two applications or two threads within an
application from accessing a socket at the same time.

 As a result, applications need to access sockets in a single-threaded manner and ensure that there is no
conflict with other applications attempting to access a socket.

• A MIPC socket can only be bound to a single port.

 In this document, when the term port is used, it can also refer to the socket bound to the port.

• Port 0 is reserved by MIPC. In addition, when MSD and MND are included in an image, port 1 is used for
MSD (see the VxWorks AMP Programmer's Guide: MIPC Serial Devices (MSD)), and port 2 is used for WDB.

• A node, in the context of MIPC programming, is an instance of an operating system running in a CPU; node
numbers do not always correspond to CPU numbers (see Terminology on page 3).

• An application should not close a MIPC socket if it is holding any zero-copy buffers, otherwise the buffers
will become unavailable for re-use by other sockets. This prohibition applies both to buffers that the
application has requested for sending (for example, buffers obtained using mipc_zalloc()), and to buffers
that have been sent to it (for example, buffers obtained using mipc_zrecv()).

The mipc_ socket API is summarized in Table 4-1 on page 37. For detailed information on individual
routines, see the API reference.

Table 4-1 : MIPC Socket API

SocketRoutine Description

mipc_accept() Accept a request for a connection to a MIPC socket.

mipc_bind()

Bind an address to a MIPC socket.

There are special macros for mipc_bind() to use in filling in fields of the
mipc_sockaddr structure (see Macros for Fields in the mipc_sockaddr Structure
When Used with mipc_bind() on page 39).

mipc_close() Close a MIPC socket.

mipc_connect() Request a connection to a MIPC socket.

mipc_getpeername() Get the address of a peer MIPC socket.

mipc_getsockname() Get the address of a MIPC socket.

mipc_getsockopt() Get the value of an option associated with a MIPC socket.

38 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_listen() Enable a MIPC socket to receive connection requests.

mipc_recv() Receive data from a MIPC socket.

mipc_recvfrom() Receive data from a MIPC socket.

mipc_send() Send a message to a MIPC socket.

mipc_sendto() Send a message to a specified MIPC socket.

mipc_setsockopt() Set the value of an option associated with a MIPC socket.

mipc_shutdown() Shut down communication by a MIPC socket.

mipc_socket() Create a MIPC socket.

For code examples showing the use of socket and non-socket routines in the mipc_ API, see mipc_ API
Code Examples on page 49.

Macros for Fields in the mipc_sockaddr Structure When Used with mipc_bind()

There are three macros for use in the busNum, nodeNum, and portNum fields of the mipc_sockaddr
structure (see The mipc_sockaddr Structure on page 36) when it is used with the mipc_bind() routine. In
each case, the macro allows MIPC to fill in the field value, rather than requiring the application to find the
value for the field.

Macro Description

MIPC_BUS_ANY

MIPC maps this macro to the first bus it attaches to at startup and returns the
corresponding bus number in the busNum field of the mipc_sockaddr structure.
This allows an application running on a node configured for only one bus to get the
bus number needed for calls to mipc_connect(), mipc_send_express(),
mipc_sendto(), and mipc_zsendto() without needing to call
mipc_getbusbyname().

MIPC_NODE_ANY

39 | Documentation

Wind River MIPC Programmer's Guide, 2.0

This macro tells MIPC to bind to the node calling mipc_bind(), which means that
the application does not need to find out its own node number. The node number
is returned in the nodeNum field of the mipc_sockaddr structure.

MIPC_PORT_ANY This macro tells MIPC to choose an available port number to bind to. The port
number is returned in the portNum field of the mipc_sockaddr structure.

5.2.3. mipc_ Routines Outside of the Socket API

Table 4-2 on page 40 lists MIPC routines that do not correspond to routines in the standard socket API.

Table 4-2 : MIPC Routines That are Not Part of the Socket API

mipc_Routine Description

mipc_addr2offset() Return an offset from the start of shared memory given a local pointer into
shared memory.

mipc_clearstats() (Deprecated) Clear MIPC statistics.

mipc_clearstatsbybus() Clear MIPC statistics for a bus.

mipc_getactivebusesl() Get a bitfield of the buses a node can utilize.

mipc_getactivenodes() Get a bit field of the active MIPC nodes on a bus.

mipc_getactivenodesl() Get a bit field of the active MIPC nodes on a bus.

mipc_getbusbyname() Get the number of a MIPC bus, given its name.

mipc_getbusmaxnodes() Get the maximum number of nodes supported on a specified bus.

mipc_getnamebybus() Get the name of a MIPC bus, given its number.

mipc_getnodebybus() Given a bus number, get the node number of the current node.

mipc_getstats() (Deprecated) Get MIPC statistics.

40 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_getuserhandle() Get the user handle associated with a socket.

mipc_offset2addr() Return the local address given an offset in shared memory.

mipc_processbus() Read and process the incoming event queue on a bus.

mipc_sendexpress64() Send a short, 64-bit express data message to a MIPC socket.

mipc_setuserhandle() Specify a user handle that is to be associated with a socket.

mipc_zalloc() Allocate a zero-copy buffer.

mipc_zfree() Free a zero-copy buffer.

mipc_zfreerx() (Deprecated) Free a zero-copy buffer kept by a receive callback.

mipc_zrecv() Receive a zero-copy message from a MIPC socket.

mipc_zrecvfrom() Receive a zero-copy message from a MIPC socket.

mipc_zsend() Send a zero-copy message to a MIPC socket.

mipc_zsendto() Send a zero-copy message to a specified MIPC socket.

For code examples showing the use of socket and non-socket routines in the MIPC API, see mipc_ API
Code Examples on page 49.

5.2.4. mipc_ API Callback Routines

MIPC provides a set of callback routines for users to implement. Implementation of the routines is optional.
The callbacks are assigned to sockets through options in the mipc_getsockopt() and mipc_setsockopt()
routines (see the API reference entry for mipc_setsockopt()).

A socket's callback routines are invoked in the execution context of the bus it is on. The Quality of service
used by buses (MIPC_SM_QOS) parameter (see the entry for Quality of service used by buses in Table
2-2 on page 9 (VxWorks) or Table 3-1 on page 21 (Linux) determines the way sockets bound to a bus
process received events such as connection attempts and the arrival of packets. If the sockets on a bus are
configured to process received events at interrupt level, any user callbacks associated with the sockets will
execute at interrupt level and must be free of blocking operations. Blocking operations at interrupt level
can result in system instability.

41 | Documentation

Wind River MIPC Programmer's Guide, 2.0

The following callbacks are available:

MIPC_CONNECTED_CALLBACK() on page 42, for responding to successful establishment of a connection.

MIPC_CONNECTREFUSED_CALLBACK() on page 42, for handling a connection refusal.

MIPC_CONNECTREQUEST_CALLBACK() on page 43, for responding to connection requests received at a
listening socket.

MIPC_DISCONNECTED_CALLBACK() on page 43, for responding to a disconnection.

MIPC_EXPRESS_CALLBACK() on page 44, for handling express data received at a socket.

MIPC_NODEJOIN_CALLBACK() on page 44, for responding when a node becomes available on a bus.

MIPC_NODELEFT_CALLBACK() on page 45, for responding when a node leaves a bus and is unavailable
for communication.

MIPC_RX_CALLBACK() on page 46, for handling zero-copy buffers received at a socket. A buffer can be
immediately released, queued for a MIPC receive routine, or held for further processing.

MIPC_RXQUEUED_CALLBACK() on page 45, for handling buffers when they are enqueued in the receive
queue of a socket.

MIPC_TXBUFAVAIL_CALLBACK() on page 47, for immediate response when a transmission buffer
becomes available.

MIPC_CONNECTED_CALLBACK()

The MIPC_CONNECTED_CALLBACK() routine is called when a connection is established on the socket.

Syntax

The syntax of the MIPC_CONNECTED_CALLBACK() routine is:

 void MIPC_CONNECTED_CALLBACK

 (

 int sockfd /* Socket descriptor */

)

MIPC_CONNECTREFUSED_CALLBACK()

The MIPC_CONNECTREFUSED_CALLBACK() routine is called when a request to connect to a socket is
refused.

42 | Documentation

Wind River MIPC Programmer's Guide, 2.0

Syntax

The syntax of the MIPC_CONNECTREFUSED_CALLBACK() routine is:

 void MIPC_CONNECTREFUSED_CALLBACK

 (

 int sockfd /* Socket descriptor */

)

MIPC_CONNECTREQUEST_CALLBACK()

The MIPC_CONNECTREQUEST_CALLBACK() routine is called when a connection request has been
received on a listening MIPC socket.

Syntax

The syntax of the MIPC_CONNECTREQUEST_CALLBACK() routine is:

 void MIPC_CONNECTREQUEST_CALLBACK

 (

 int sockfd, /* Socket descriptor */

 uint16_t srcNode, /* Node that sent request */

 uint16_t srcPort, /* Port that sent request */

 uint64_t data /* data */

)

MIPC_DISCONNECTED_CALLBACK()

The MIPC_DISCONNECTED_CALLBACK() routine is called when the socket is disconnected.

Syntax

The syntax of the MIPC_DISCONNECTED_CALLBACK() routine is:

 void MIPC_DISCONNECTED_CALLBACK

43 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 (

 int sockfd /* Socket descriptor */

)

MIPC_EXPRESS_CALLBACK()

The MIPC_EXPRESS_CALLBACK() routine is called when express data is received at a socket.

Syntax

The syntax of the MIPC_EXPRESS_CALLBACK() routine is:

 void MIPC_EXPRESS_CALLBACK

 (

 int sockfd /* Socket descriptor */

 unsigned short srcNode, /* Node that sent data */

 unsigned short srcPort, /* Port that sent data */

 unsigned short data /* Data */

)

MIPC_NODEJOIN_CALLBACK()

The MIPC_NODEJOIN_CALLBACK() routine is called for each node that joins the bus on which the socket
is bound.

Syntax

The syntax of the MIPC_NODEJOIN_CALLBACK() routine is:

 void MIPC_NODEJOIN_CALLBACK

 (

 int sockfd, /* Socket descriptor */

 unsigned short nodeNum /* Node that joined the bus */

)

44 | Documentation

Wind River MIPC Programmer's Guide, 2.0

MIPC_NODELEFT_CALLBACK()

The MIPC_NODELEFT_CALLBACK() routine is called for each node that leaves the bus on which the
socket is bound.

Syntax

The syntax of the MIPC_NODELEFT_CALLBACK() routine is:

 void MIPC_NODELEFT_CALLBACK

 (

 int sockfd, /* Socket descriptor */

 unsigned short nodeNum /* Node that left the bus */

)

MIPC_RXQUEUED_CALLBACK()

The MIPC_RXQUEUED_CALLBACK() routine is called for each zero-copy buffer that is added to the
receive queue of a socket. When the callback is called, data is ready to be received and the application can
call one of the following receive routines without blocking:

• For receiving data into a user-defined area:

 – mipc_recv()

 – mipc_recvfrom()

• For receiving data in a zero copy buffer:

 – mipc_zrecv()

 – mipc_zrecvfrom()

Syntax

The syntax of the MIPC_RXQUEUED_CALLBACK() routine is:

 int MIPC_RXQUEUED_CALLBACK

 (

 int sd, /* socket that queued a message */

45 | Documentation

Wind River MIPC Programmer's Guide, 2.0

)

In the current release, the return value must always be 0.

MIPC_RX_CALLBACK()

The MIPC_RX_CALLBACK() routine is called for each zero-copy buffer received on the socket. It allows
you to immediately release the buffer, queue it for one of the MIPC receive routines (mipc_recv(),
mipc_recvfrom(), mipc_zrecv(), mipc_zrecvfrom()), or hold it for further processing.

Syntax

The syntax of the MIPC_RX_CALLBACK() routine is:

 int MIPC_RX_CALLBACK

 (

 int sockfd, /* socket that received message */

 const unsigned char *buff, /* pointer to received buffer */

 size_t nbytes, /* size of buffer */

 unsigned short srcNodeNum, /* sender's node number */

 unsigned short srcPortNum, /* sender's port number */

 MIPC_ZBUFFER zbuf /* handle to buffer */

)

If you keep the received zero-copy buffer for further processing, the zbuf parameter allows you to release
the buffer using the mipc_zfree() routine.

Return Value

MIPC_RX_CALLBACK() returns one of the following values:

Table 4-3 : MIPC_RX_CALLBACK() Return Values

Return Value Description

MIPC_RX_RELEASEBUF Release the data buffer.

46 | Documentation

Wind River MIPC Programmer's Guide, 2.0

MIPC_RX_QUEUEBUF Queue the data buffer, making it available to the mipc_recv() and
mipc_recvfrom() routines.

MIPC_RX_KEEPBUF Keep the buffer without queuing it. When the application is ready to release
the buffer, it should call mipc_zfree().

MIPC_TXBUFAVAIL_CALLBACK()

The MIPC_TXBUFAVAIL_CALLBACK() routine is called when a socket that had no available transmission
buffers once again has a buffer available for transmission.

Syntax

The syntax of the MIPC_TXBUFAVAIL_CALLBACK() routine is:

 void MIPC_TXBUFAVAIL_CALLBACK

 (

 int sockfd /* Socket descriptor */

)

5.2.5. Validating Parameters in mipc_ API Routines

For purposes of debugging during application development, you can turn on parameter checking for
routines belonging to the mipc_ API. To do this:

1. Open mipc_sm_adapt.h for editing.

 The location of the file is:

 For VxWorks:

installDir/vxworks-6.x/target/h/multios_ipc/mipc_sm_adapt.h

 For Linux:

projectDir/build/linux/drivers/multios_ipc_lkm/multios_ipc/mipc_sm_adapt.h

2. Define the compiler flag MIPC_CHECK_ARGS.

 By default, the flag is undefined in the file. Locate the flag in the file, and set it to:

 #define MIPC_CHECK_ARGS

3. Recompile the MIPC code, as follows:

47 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 For VxWorks:

 cd target/src/multios_ipcmake CPU=cpu TOOL=toolchain

 For Linux you need to rebuild the kernel:

 make -C build linux.rebuild

Using parameter checking increases the size of the MIPC code and can impair performance. Once you have
debugged and regression tested your code, you should make sure to turn off parameter checking, either
by explicitly undefining MIPC_CHECK_ARGS in mipc_sm_adapt.h or by commenting it out, and then
recompile your code, as in Step on page 47040#b5a0f003-0940-492c-aad4-65b5eab05884__wp168973 on
page 47.

5.2.6. mipc_ API Error Codes

MIPC error codes have a one-to-one correspondence with POSIX error codes. For example, the
MIPC_EINVAL error code directly corresponds to the POSIX EINVAL error code. Defines for the MIPC
error codes are in:

 For VxWorks:

installDir/vxworks-6.x/target/h/multios_ipc/mipc_os_adapt.h

 For Linux:

projectDir/build/linux/drivers/multios_ipc_lkm/multios_ipc/mipc_os_adapt.h

5.3. Express Data Transfer

Express data transfer is a feature that allows MIPC kernel applications or kernel threads to send short, 64-
bit messages to each other more rapidly than they could using either standard or zero-copy data transfer.

You can send express data from any bound socket to any port on the same bus as the socket. For example,
you can send express data from a MIPC_SOCK_STREAM socket to a MIPC_SOCK_RDM socket. Note,
however, that MIPC does not provide flow control to regulate express data messaging. If express data is
sent too frequently, it can interfere with the handling of non-express messages and with connection
handshaking.

To send express data, you need to use the following routines:

• mipc_sendexpress64() (for information, see the API reference)

To receive express data, you need to use the following callback routine:

• MIPC_EXPRESS_CALLBACK() (see MIPC_EXPRESS_CALLBACK() on page 44).

Usage Example: Exchanging Pointers to Locations in Shared Memory

Sockets can exchange data in shared memory by sending express data that contains pointers to data in
shared memory. To implement this, a sender can allocate a shared-memory buffer using the mipc_zalloc()
routine. It then fills the buffer with information, converts a pointer to the buffer to an offset (see Routines
for Shared-Memory Address Translation on page 49), and sends the offset to the receiver.

48 | Documentation

Wind River MIPC Programmer's Guide, 2.0

The receiving application gets the offset and, after converting for node addressing (see Routines for
Shared-Memory Address Translation on page 49), directly accesses the shared-memory buffer to respond
to the information in the buffer. It can then signal that it has completed its use of the buffer by sending an
express-data acknowledgement back to the sender.

You can also use the exchange of pointers to buffers in shared memory to implement shared variables for
applications on different nodes. In this case, to maintain the integrity of the variables, you can use the
atomic operations provided for AMP (see VxWorks Kernel Programmer's Guide: Atomic Operators for
AMP).

Routines for Shared-Memory Address Translation

Operating systems on separate nodes may address shared memory at different locations. The following two
routines are available to simplify address translation between operating systems:

• mipc_addr2offset() takes a shared-memory address and returns its offset.

• mipc_offset2addr() takes an offset into shared memory and returns its address.

5.4. Mipc_ API Code Examples

This section provides code examples showing the use of individual routines in the MIPC API. The routines
appear in alphabetical order. The following deprecated routines are excluded:

 mipc_clearstats()mipc_getstats()mipc_zfreerx()

The code illustrating a particular routine has error checking for that routine but, in order to keep examples
short, there is no error checking for other routines called within the example. Thus, in the example for
mipc_accept(), the call to mipc_accept() is validated, but there is no validation of calls to mipc_socket()
and mipc_bind().

The examples assume the following definitions and variable declarations:

#define TEST_BUSNAME "main"

#define TEST_PORTNUM 3

#define TEST_MSG "Hello"

#define TEST_MSG_REPLY "Hi Back"

#define TEST_MSG_SIZE (sizeof(TEST_MSG_REPLY))

#define TEST_MSG_REPLY_SIZE (sizeof(TEST_MSG))

int sd_rdm; /* rdm socket sd */

int sd_seqpkt; /* sequential socket sd */

int sd_accept; /* accepted socket sd */

int busnum; /* bus number we want to bind to */

49 | Documentation

Wind River MIPC Programmer's Guide, 2.0

int rc; /* return code */

int nbytes; /* number of bytes */

struct mipc_sockaddr addr; /* binding address */

struct mipc_sockaddr peer; /* peer address */

int addrlen; /* length of a mipc_sockaddr structure */

uint8_t *buf; /* pointer to a buffer */

char buffer[100]; /* buffer for sending or receiving */

MIPC_ZBUFFER zbuf; /* zero copy buffer */

mipc_accept()

char busname[MIPC_SM_MAX_NAME_LEN]; /* storage for bus name */

struct mipc_stats statsbuf; /* storage for MIPC statistics */

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

mipc_listen(sd_seqpkt, 2);

sd_accept = mipc_accept(sd_seqpkt, &peer, &peerlen);

if (sd_accept < 0)

 {

 MIPC_PRINT("Could not accept a connection (err=%d)\n",sd_accept);

 }

mipc_bind()

addr.family = MIPC_AF;

addr.busNum = busnum;

addr.nodeNum = MIPC_NODE_ANY;

addr.portNum = TEST_PORTNUM;

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

50 | Documentation

Wind River MIPC Programmer's Guide, 2.0

if (mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr)) < 0)

 {

 MIPC_PRINT("Failed to bind socket (%d).\n", sd_seqpkt);

 }

mipc_clearstatsbybus()

/* clear the statistics */

mipc_getbusbyname(TEST_BUSNAME, &busnum);

if (mipc_clearstatsbybus(busnum) < 0)

 {

 MIPC_PRINT("Failed to clear stats (incorrect bus number?\n");

 }

mipc_close()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

addr.family = MIPC_AF;

addr.busNum = busnum;

addr.nodeNum = MIPC_NODE_ANY;

addr.portNum = TEST_PORTNUM;

sd_rdm = mipc_socket(0, MIPC_SOCK_RDM, 0);

if (mipc_bind(sd_rdm, &addr, sizeof(struct mipc_sockaddr)) < 0)

 {

 MIPC_PRINT("Failed to bind socket (%d).\n", sd_rdm);

 mipc_close(sd_rdm);

 return;

 }

mipc_sendto(sd_rdm, sbuf, TEST_MSG_SIZE, 0, &peer, addrlen);

51 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_close (sd_rdm);

mipc_connect()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

addr.family = MIPC_AF;

addr.busNum = busnum;

addr.nodeNum = MIPC_NODE_ANY;

addr.portNum = TEST_PORTNUM;

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_seqpkt, &addr, &addrlen) < 0);

peer.family = MIPC_AF;

peer.busNum = busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

if (mipc_connect(sd_seqpkt, &peerAddr,

 sizeof(struct mipc_sockaddr)) < 0)

 {

 MIPC_PRINT("Failed to connect to peer socket.\n");

 }

mipc_getactivenodes()

unsigned long long nodes;

mipc_getbusbyname(TEST_BUSNAME, &busnum);

if (mipc_getactivenodes(busnum, &nodes) < 0)

52 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 {

 MIPC_PRINT("Failed to get active nodes.\n");

 }

mipc_getactivenodesl()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

if (mipc_getactivenodesl(busnum, &buffer, 5 /* eg length */) < 0)

 {

 MIPC_PRINT("Failed to get active nodes.\n");

 }

mipc_getbusbyname()

if (mipc_getbusbyname(TEST_BUSNAME, &busnum) < 0)

 {

 MIPC_PRINT("Failed to find bus '%s'.\n", TEST_BUSNAME);

 return -1;

 }

mipc_getnamebybus()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

if (mipc_getnamebybus(busnum, busname, MIPC_SM_BUS_MAX_NAME_LEN) < 0)

 {

 MIPC_PRINT("Failed to get bus name for bus %d.\n", busnum);

 }

53 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_getnodebybus()

if (mipc_getnodebybus(busnum) < 0)

 {

 MIPC_PRINT("Failed to get node number on invalid bus %d.\n", busnum);

 }

mipc_getpeername()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_seqpkt, &addr, &addrlen) < 0);

addr.busNum = busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

mipc_connect(sd_seqpkt, &peerAddr, sizeof(struct mipc_sockaddr));

rc = mipc_getpeername(sd_seqpkt, &peeraddr, &addrlen);

if (rc != MIPC_OK)

 {

 MIPC_PRINT("mipc_getpeername() returned error %d.\n", rc);

 }

mipc_getsockname()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

addr.family = MIPC_AF;

addr.busNum = busnum;

54 | Documentation

Wind River MIPC Programmer's Guide, 2.0

addr.nodeNum = MIPC_NODE_ANY;

addr.portNum = TEST_PORTNUM;

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

if (mipc_getsockname(sd_seqpkt, &addr, &addrlen) < 0)

 {

 MIPC_PRINT("Failed to get address of socket (%d).\n", sd_seqpkt);

 }

mipc_getsockopt()

int optVal;

int optLen = sizeof(optVal);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

rc = mipc_getsockopt(sd_seqpkt, MIPC_SOL, MIPC_SO_TXBUFS,

 (void *)&optVal, &optLen);

if (rc < 0)

 {

 MIPC_PRINT("Failed to get sock option MIPC_SO_TXBUFS

 (err=%d)\n", rc);

 }

mipc_getstatsbybus()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

if (mipc_getstatsbybus(&statsbuf, sizeof(struct mipc_stats)) < 0)

 {

 MIPC_PRINT("Failed to get statistics on bus %d. Is the MIPC_STATS_MODE set to 1?\n", busnum);

55 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 }

mipc_listen()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_seqpkt, &addr, &addrlen) < 0);

if (mipc_listen(sd_seqpkt, 2) < 0)

 {

 MIPC_PRINT("Failed to set socket up to listen.\n");

 }

mipc_processbus()

/* Process any events on a given bus */

if (mipc_processbus(busnum) < 0)

 {

 MIPC_PRINT("Failed to process unreachable bus %d.\n", busnum);

 }

mipc_recv()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

addr.family = MIPC_AF;

addr.busNum = busnum;

addr.nodeNum = MIPC_NODE_ANY;

addr.portNum = TEST_PORTNUM;

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

56 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_connect(sd_seqpkt, &peerAddr, sizeof(struct mipc_sockaddr));

nbytes = mipc_recv(sd_seqpkt, &buffer, sizeof(buffer), 0);

if (nbytes <= 0)

 {

 MIPC_PRINT("Could not receive a message from peer (err=%d)\n",

 nbytes);

 }

mipc_recvfrom()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_rdm = mipc_socket(0, MIPC_SOCK_RDM, 0);

mipc_bind(sd_rdm, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

nbytes = mipc_recvfrom(sd_rdm, &buffer, sizeof(buffer),0,&peer,

 &addrlen);

if (nbytes <= 0)

 {

 MIPC_PRINT("Could not receive a message (err=%d)\n", nbytes);

 }

mipc_send()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_seqpkt, &addr, &addrlen) < 0);

peer.family = MIPC_AF;

57 | Documentation

Wind River MIPC Programmer's Guide, 2.0

peer.busNum = addr.busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

mipc_connect(sd_seqpkt, &peerAddr, sizeof(struct mipc_sockaddr));

strcpy(buffer, TEST_MSG);

nbytes = mipc_send(sd_seqpkt, buffer, TEST_MSG_SIZE, 0);

if (nbytes < TEST_MSG_SIZE)

 {

 MIPC_PRINT("Could not send the message to peer (err=%d)\n",

 nbytes);

 mipc_zfree(sd_seqpkt, zbuf);

 }

mipc_sendto()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_rdm = mipc_socket(0, MIPC_SOCK_RDM, 0);

mipc_bind(sd_rdm, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_rdm, &addr, &addrlen) < 0);

peer.family = MIPC_AF;

peer.busNum = addr.busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

strcpy(sbuf, TEST_MSG);

nbytes = mipc_sendto(sd_rdm, sbuf, TEST_MSG_SIZE, 0, &peer, addrlen);

if (nbytes < TEST_MSG_SIZE)

 {

 MIPC_PRINT("Could not send the message to peer (err=%d)\n",

58 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 nbytes);

 }

mipc_sendexpress64()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_rdm = mipc_socket(0, MIPC_SOCK_RDM, 0);

mipc_bind(sd_rdm, &addr, sizeof(struct mipc_sockaddr));

peer.family = MIPC_AF;

peer.busNum = addr.busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

if (mipc_sendexpress64(sd_rdm, &peer, data64) < 0)

 {

 MIPC_PRINT("Failed to send express data to peer.\n");

 }

mipc_setsockopt()

int optVal = 8;

int optLen = sizeof(optVal);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

rc = mipc_setsockopt(sd_seqpkt, MIPC_SOL, MIPC_SO_TXBUFS,

 (void *)&optVal, &optLen);

if (rc < 0)

 {

 MIPC_PRINT("Failed to set sock option MIPC_SO_TXBUFS

 (err=%d)\n", rc);

 }

59 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_shutdown()

addr.family = MIPC_AF;

addr.nodeNum = MIPC_NODE_ANY;

addr.busNum = busnum;

addr.portNum = TEST_PORTNUM;

sd_rdm = mipc_socket(0, MIPC_SOCK_RDM, 0);

if (mipc_bind(sd_rdm, &addr, sizeof(struct mipc_sockaddr)) < 0)

 {

 MIPC_PRINT("Failed to bind socket (%d).\n", sd_rdm);

 mipc_close(sd_rdm);

 return;

 }

mipc_sendto(sd_rdm, sbuf, TEST_MSG_SIZE, 0, &peer, addrlen);

mipc_shutdown(sd_rdm, MIPC_SHUT_RDWR);

mipc_socket()

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

if (sd_seqpkt < 0)

 {

 MIPC_PRINT("Could not create a MIPC socket (error = %d)\n",

 sd_seqpkt);

 return -1;

 }

mipc_zalloc()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

60 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_seqpkt, &addr, &addrlen) < 0);

peer.family = MIPC_AF;

peer.busNum = addr.busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

mipc_connect(sd_seqpkt, &peerAddr, sizeof(struct mipc_sockaddr));

if (mipc_zalloc(sd_seqpkt, 0 /* MTU size */, &buf, &zbuf, 0) < 0)

 {

 MIPC_PRINT("mipc_zalloc could not allocate a buffer (possibly would block

 on a non-blocking socket)\n");

 }

mipc_zallocbuf()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_seqpkt, &addr, &addrlen) < 0);

peer.family = MIPC_AF;

peer.busNum = addr.busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

mipc_connect(sd_seqpkt, &peerAddr, sizeof(struct mipc_sockaddr));

if (mipc_zallocbuf(sd_seqpkt, &buf, &zbuf, 0) < 0)

 {

 MIPC_PRINT("mipc_zallocbuf could not allocate a buffer (possibly would block on a non-blocking socket)\n");

 }

61 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_zfree()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_connect(sd_seqpkt, &peerAddr, sizeof(struct mipc_sockaddr));

mipc_zrecv(sd_seqpkt, &buf, &zbuf, 0);

mipc_zfree(sd_seqpkt, zbuf);

mipc_zrecv()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_connect(sd_seqpkt, &peerAddr, sizeof(struct mipc_sockaddr));

nbytes = mipc_zrecv(sd_seqpkt, &buf, &zbuf, 0);

if (nbytes < 0)

 {

 MIPC_PRINT("Could not recv a peer response (err=%d)\n", nbytes);

 }

mipc_zrecvfrom()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_rdm = mipc_socket(0, MIPC_SOCK_RDM, 0);

mipc_bind(sd_rdm, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

62 | Documentation

Wind River MIPC Programmer's Guide, 2.0

nbytes = mipc_zrecvfrom(sd_rdm, &buf, &zbuf, 0, &peer, &addrlen);

if (nbytes < 0)

 {

 MIPC_PRINT("Could not recv a peer response (err=%d)\n", nbytes);

 }

mipc_zsend()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

mipc_bind(sd_seqpkt, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_seqpkt, &addr, &addrlen) < 0);

peer.family = MIPC_AF;

peer.busNum = addr.busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

mipc_connect(sd_seqpkt, &peerAddr, sizeof(struct mipc_sockaddr));

mipc_zalloc(sd_seqpkt, 0 /* MTU size */, &buf, &zbuf, 0);

strcpy(&buf, TEST_MSG); /* assume MTU bigger than TEST_MSG */

nbytes = mipc_zsend(sd_seqpkt, zbuf, TEST_MSG_SIZE, 0);

if (nbytes < TEST_MSG_SIZE)

 {

 MIPC_PRINT("Could not send the message to peer (err=%d)\n",

 nbytes);

 mipc_zfree(sd_seqpkt, zbuf);

 }

63 | Documentation

Wind River MIPC Programmer's Guide, 2.0

mipc_zsendto()

mipc_getbusbyname(TEST_BUSNAME, &busnum);

sd_rdm = mipc_socket(0, MIPC_SOCK_RDM, 0);

mipc_bind(sd_rdm, &addr, sizeof(struct mipc_sockaddr));

addrlen = sizeof(struct mipc_sockaddr);

mipc_getsockname(sd_rdm, &addr, &addrlen) < 0);

peer.family = MIPC_AF;

peer.busNum = addr.busnum;

peer.portNum = TEST_PORTNUM;

peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

mipc_zalloc(sd_rdm, 0 /* MTU size */, &buf, &zbuf, 0);

strcpy(&buf, TEST_MSG); /* assume MTU bigger than TEST_MSG */

nbytes = mipc_zsendto(sd_rdm, zbuf, TEST_MSG_SIZE, 0, &peer,

 addrlen);

if (nbytes < TEST_MSG_SIZE)

 {

 MIPC_PRINT("Could not send the message to peer (err=%d)\n",

 nbytes);

 mipc_zfree(sd_rdm, zbuf);

 }

5.5. Mipc_ API Sample Application (VxWorks)

The following application for VxWorks illustrates the use of the mipc_ API with zero-copy buffers. It uses
mipc_zsend() to send a message and mipc_zrecv() to receive a message. The sender and receiver are
hardcoded to use nodes 0 and 1, but either node can be a sender or a receiver.

By default, the application uses MIPC bus main, but you can specify a different bus from the command line.

To run the application using main, from the command line, enter:

 Receiving node:mipc_demo_zrecv

 Sending node:mipc_demo_zsend

64 | Documentation

Wind River MIPC Programmer's Guide, 2.0

To run the application using a virtual bus other than main, specify the bus on the command line, as in the
following example for app1_secondary:

 Receiving node:mipc_demo_zrecv "app1_secondary"

 Sending node:mipc_demo_zsend "app1_secondary"

Sample Application

/* Copyright (c) 2008-2009 Wind River Systems, Inc. */

#include <multios_ipc/mipc.h>

#include <string.h>

static int mycpu = 0; /* this cpu number */

static int peercpu = 0; /* my peer's cpu number */

#define TEST_BUSNAME "main"

#define TEST_PORTNUM 3

#define TEST_SEND_PORTNUM 0 /* use any port */

#define TEST_MSG "Hello"

#define TEST_MSG_REPLY "Hi Back"

#define TEST_MSG_SIZE sizeof(TEST_MSG)

#define TEST_MSG_REPLY_SIZE sizeof(TEST_MSG_REPLY)

/***

* mipc_demo_zsend - send a message to a peer using mipc_zsend.

*/

int mipc_demo_zsend (char * busname)

{

 int sd_seqpkt; /* sequential socket sd */

 int busnum; /* bus number we want to bind to */

 struct mipc_sockaddr addr; /* binding address */

 struct mipc_sockaddr peer; /* peer address */

65 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 size_t addrlen; /* address structure length */

 uint8_t *buf; /* pointer to a buffer */

 int nbytes; /* number of bytes */

 int rc; /* return code for operations */

 MIPC_ZBUFFER zbuf; /* buffer handle */

 MIPC_PRINT("mipc_demo_zsend: Sequential Packet test with zero-copy.\n");

 if ((rc = mipc_getbusbyname((!busname) ? TEST_BUSNAME : busname,

 &busnum)) < 0) {

 MIPC_PRINT("Failed to find bus '%s' (err=%d).\n",

 TEST_BUSNAME, rc);

 return -1;

 }

 sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

 if (sd_seqpkt < 0) {

 MIPC_PRINT("Could not create a MIPC socket (error = %d)\n",

 sd_seqpkt);

 return -1;

 }

 addr.busNum = busnum;

 addr.portNum = TEST_PORTNUM;

 if ((rc = mipc_bind(sd_seqpkt, &addr,

 sizeof(struct mipc_sockaddr))) < 0) {

 MIPC_PRINT("Failed to bind socket (%d) (err=%d).\n", sd_seqpkt,

 rc);

 goto send_close;

 }

66 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 addrlen = sizeof(struct mipc_sockaddr);

 if ((rc = mipc_getsockname(sd_seqpkt, &addr, &addrlen)) < 0) {

 MIPC_PRINT("Failed to get address of socket (%d) (err=%d).\n",

 sd_seqpkt, rc);

 goto send_close;

 }

 peer.busNum = addr.busNum;

 peer.portNum = TEST_PORTNUM;

 peer.nodeNum = (addr.nodeNum == 0) ? 1 : 0;

 if ((rc = mipc_connect(sd_seqpkt, &peer,

 sizeof(struct mipc_sockaddr))) < 0) {

 MIPC_PRINT("Failed to connect to peer socket (err=%d).\n", rc);

 goto send_close;

 }

 /* our socket blocks by default, so mipc_zalloc will always work */

 mipc_zalloc(sd_seqpkt, 0 /* MTU size */, &buf, &zbuf, 0);

 strcpy((char *)buf, TEST_MSG); /* assume MTU > TEST_MSG */

 MIPC_PRINT("We are sending '%s' to peer.\n", buf);

 nbytes = mipc_zsend(sd_seqpkt, zbuf, TEST_MSG_SIZE, 0);

 if (nbytes < TEST_MSG_SIZE) {

 MIPC_PRINT("Could not send the message to peer (err=%d)\n",

 nbytes);

 mipc_zfree(sd_seqpkt, zbuf);

 goto send_close;

67 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 }

 nbytes = mipc_zrecv(sd_seqpkt, &buf, &zbuf, 0);

 if (nbytes < 0) {

 MIPC_PRINT("Could not recv a peer response (err=%d)\n", nbytes);

 goto send_close;

 }

 MIPC_PRINT("Peer replied with '%s'\n", buf);

 mipc_zfree(sd_seqpkt, zbuf);

 mipc_close (sd_seqpkt);

 return 0;

send_close:

 mipc_close (sd_seqpkt);

 return -1;

}

/***

* mipc_demo_zrecv - recv a message from a peer using mipc_zrecv.

*/

int mipc_demo_zrecv (char * busname)

{

 int sd_seqpkt; /* sequential socket sd */

 int sd_accept; /* sequential socket sd */

 int busnum; /* bus number we want to bind to */

 struct mipc_sockaddr addr; /* binding address */

 struct mipc_sockaddr peer; /* peer address */

 size_t addrlen; /* address structure length */

 uint8_t *buf; /* buffer */

68 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 int nbytes; /* number of bytes */

 int rc; /* return code for operations */

 MIPC_ZBUFFER zbuf; /* buffer handle */

 MIPC_PRINT("mipc_demo_zrecv: Sequential Packet test with zero-copy.\n");

 if ((rc = mipc_getbusbyname((!busname) ? TEST_BUSNAME : busname,

 &busnum)) < 0) {

 MIPC_PRINT("Failed to find bus '%s' (err=%d).\n", TEST_BUSNAME,

 rc);

 return -1;

 }

 sd_seqpkt = mipc_socket(0, MIPC_SOCK_SEQPACKET, 0);

 if (sd_seqpkt < 0) {

 MIPC_PRINT("Could not create a MIPC socket (error = %d)\n",

 sd_seqpkt);

 return -1;

 }

 addr.busNum = busnum;

 addr.portNum = TEST_PORTNUM;

 if ((rc = mipc_bind(sd_seqpkt, &addr,

 sizeof(struct mipc_sockaddr))) < 0) {

 MIPC_PRINT("Failed to bind socket (%d) (err=%d).\n", sd_seqpkt,

 rc);

 goto recv_close;

 }

69 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 addrlen = sizeof(struct mipc_sockaddr);

 if ((rc = mipc_getsockname(sd_seqpkt, &addr, &addrlen)) < 0) {

 MIPC_PRINT("Failed to get address of socket (%d) (err=%d).\n",

 sd_seqpkt, rc);

 goto recv_close;

 }

 if ((rc = mipc_listen(sd_seqpkt, 2)) < 0) {

 MIPC_PRINT("Failed to set socket up to listen (err=%d).\n", rc);

 goto recv_close;

 }

 sd_accept = mipc_accept(sd_seqpkt, &peer, &addrlen);

 if (sd_accept < 0) {

 MIPC_PRINT("Could not accept a connection (err=%d)\n", sd_accept);

 goto recv_close;

 }

 nbytes = mipc_zrecv(sd_accept, &buf, &zbuf, 0);

 if (nbytes < 0) {

 MIPC_PRINT("Could not recv a peer response (err=%d)\n", nbytes);

 goto recv_close2;

 }

 MIPC_PRINT("Peer sent us '%s'\n", buf);

 mipc_zfree(sd_accept, zbuf);

 /* our socket is blocking by default, so mipc_zalloc always works */

 mipc_zalloc(sd_accept, 0 /* MTU size */, &buf, &zbuf, 0);

70 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 strcpy((char *)buf, TEST_MSG_REPLY); /* assume MTU > TEST_MSG_REPLY */

 MIPC_PRINT("We are sending back '%s'\n", buf);

 nbytes = mipc_zsend(sd_accept, zbuf, TEST_MSG_REPLY_SIZE, 0);

 if (nbytes < TEST_MSG_REPLY_SIZE) {

 MIPC_PRINT("Could not send the message to peer (err=%d)\n",

 nbytes);

 mipc_zfree(sd_accept, zbuf);

 goto recv_close2;

 }

 mipc_close (sd_accept);

 mipc_close (sd_seqpkt);

 return 0;

recv_close2:

 mipc_close (sd_accept);

recv_close:

 mipc_close (sd_seqpkt);

 return -1;

}

71 | Documentation

Wind River MIPC Programmer's Guide, 2.0

6. AF_MIPC API (LINUX ONLY)
Introduction on page 72

AF_MIPC Socket Address Structure on page 72

AF_MIPC Socket API on page 73

Informational Routines Added to the AF_MIPC Socket API on page 75

AF_MIPC Symbols for MIPC Version Numbers on page 76

Features of BSD Sockets Not Supported by AF_MIPC on page 76

Differences Between AF_MIPC and mipc_ Sockets on page 78

6.1. Introduction

For Linux user-space applications, MIPC 2.0 provides the AF_MIPC API, which supports most features of
the standard socket API defined by the Berkeley Software Distribution (BSD) (see AF_MIPC Socket API on
page 73). The socket family for use with the AF_MIPC API is AF_MIPC.

Note that the current release does not support user-space (RTP) applications for VxWorks.

6.2. AF_MIPC Socket Address Structure

The AF_MIPC API has its own socket address structure:

 struct sockaddr_mipc {

 unsigned short family; /* address family (AF_MIPC) */

 unsigned short busNum; /* bus number */

 unsigned short nodeNum; /* node number */

 unsigned short portNum; /* port number */

 };

where:

 family is AF_MIPC.

 busNum is the number of the bus that the socket is bound to. To obtain the bus number, you can use the
mipc_getbusbyname() routine.

 nodeNum is the number of the node that the socket is bound to.

 portNum is the number of the port that the socket is bound to.

For use with the bind() routine, there are macro definitions for the busNum, nodeNum, and portNum fields
(see Macros for Fields in the mipc_sockaddr When Used with mipc_bind() on page 75).

72 | Documentation

Wind River MIPC Programmer's Guide, 2.0

6.3. AF_MIPC Socket API

This section presents the AF_MIPC socket API. In the current release, which limits the API to Linux
applications, you need to include the mipc.h header file, as follows:

 #include <linux/mipc.h>

Table 5-1 on page 73lists the BSD socket calls supported by AF_MIPC. Unless otherwise noted, the listed
routines conform to POSIX (Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition).

Table 5-1 : AF_MIPC Support for BSD Socket Routines

Socket Routine Comment

accept()

bind()
There are special macros for bind() to use in filling in fields of the sockaddr_mipc
structure (see Macros for Fields in the mipc_sockaddr When Used with mipc_bind() on
page 75).

close()

connect()

getpeername()

getsockname()

getsockopt() See setsockopt() for a list of supported options.

listen()

poll()

read()

recv()

recvfrom()

73 | Documentation

Wind River MIPC Programmer's Guide, 2.0

recvmsg()

For some protocols, the recvmsg() routine returns ancillary data items in a
msg_control array. MIPC does not use this array, which can therefore be set to NULL.

The recvmsg() routine supports the following flags:

• MSG_DONTWAIT

• MSG_PEEK

• MSG_TRUNC

• MSG_WAITALL

select()

send()

sendmsg()
The following flag is supported:

 MSG_DONTWAIT

sendto()

setsockopt()

The setsockopt() routine for MIPC does not support standard SOL_SOCKET options.
The following MIPC-specific SOL_MIPC options are supported:

• MIPC_SO_MTU

• MIPC_SO_RXBUFS

• MIPC_SO_TXBUFS

• MIPC_SO_CONN_TIMEOUT

• MIPC_SO_RECEIVE_TIMEOUT

• MIPC_SO_SEND_TIMEOUT

• (Deprecated) MIPC_SO_SHUTDOWN_TIMEOUT

For information on individual options, see the API reference entry for
mipc_setsockopt() or mipc_getsockopt.

shutdown()

socket() The following socket types are supported:

• SOCK_DGRAM

• SOCK_RDM

74 | Documentation

Wind River MIPC Programmer's Guide, 2.0

• SOCK_SEQPACKET

• SOCK_STREAM

write()

Macros for Fields in the mipc_sockaddr When Used with mipc_bind()

There are three macros for use in the busNum, nodeNum, and portNum fields of the sockaddr_mipc
structure (see AF_MIPC Socket Address Structure on page 72) when it is used with the mipc_bind()
routine. In each case, the macro allows MIPC to fill in the field value, rather than requiring the application to
find the value for the field.

Macro Description

MIPC_BUS_ANY

MIPC maps this macro to the first bus it attaches to at startup and returns the
corresponding bus number in the busNum field of the mipc_sockaddr structure.
This allows an application running on a node configured for only one bus to get the
bus number needed for calls to mipc_connect(), mipc_send_express(),
mipc_sendto(), and mipc_zsendto() without needing to call
mipc_getbusbyname().

MIPC_NODE_ANY
This macro tells MIPC to bind to the node calling mipc_bind(), which means that
the application does not need to find out its own node number. The node number
is returned in the nodeNum field of the mipc_sockaddr structure.

MIPC_PORT_ANY This macro tells MIPC to choose an available port number to bind to. The port
number is returned in the portNum field of the mipc_sockaddr structure.

6.4. Informational Routines Added to the AF_MIPC Socket API

The routines in Table 5-2 on page 75 provide useful information about MIPC nodes and buses. They are
part of the mipc_ API, but can also be used with the AF_MIPC API.

75 | Documentation

Wind River MIPC Programmer's Guide, 2.0

Table 5-2 : Routines Added to the AF_MIPC Socket API

mipc_Routine Description

mipc_getactivebusesl() Get a bitfield of the buses a node can utilize.

mipc_getactivenodesl() Get a bitfield of the active MIPC nodes on a bus.

mipc_getbusbyname() Get the number of a MIPC bus, given its name.

mipc_getnamebybus() Get the name of a MIPC bus, given its number.

mipc_getnodebybus() Given a bus number, get the node number of the current node.

6.5. AF_MIPC Symbols for MIPC Version Numbers

The AF_MIPC API provides the following symbols that make it possible for an application to find out which
version of MIPC it is using:

• MIPC_VERSION_MAJOR

 The first number in a MIPC version number given as X.Y. For example, the number 2 in MIPC version 2.0.

• MIPC_VERSION_MINOR

 The second value in a MIPC version number given as X.Y. For example, the value 0 in MIPC version 2.0.

6.6. Features of BSD Sockets Not Supported by AF_MIPC

This section covers features of BSD sockets that are not supported by AF_MIPC.

Unsupported BSD Socket Routines

The following BSD socket routines are not supported:

 – sockatmark()

 – socketpair()

76 | Documentation

Wind River MIPC Programmer's Guide, 2.0

Unsupported BSD Send and Receive Flags

The following send and receive flags are not supported:

 – MSG_BCAST

 – MSG_CTRUNC

 – MSG_DONTROUTE

 – MSG_EOR

 – MSG_MCAST

 – MSG_OOB

Unsupported SOL_SOCKET Options

AF_MIPC does not support any SOL_SOCKET options.

Unsupported ioctl() Requests

The following BSD ioctl() requests are not supported:

 – SIOCATMARK

 – SIOCSPGRP

 – SIOCGPRGRP

 – FIOASYNC

 – FIONREAD

 – FIOSETOWN

 – SIOGETOWN

Implicit Binding is Not Supported

 AF_MIPC does not support implicit binding of a port name.

Asynchronous connect() is Not Supported

 AF_MIPC does not support the asynchronous form of the connect() routine.

77 | Documentation

Wind River MIPC Programmer's Guide, 2.0

O_ASYNC File Status Flag is Not Supported

 AF_MIPC does not support the O_ASYNC file status flag for signal-driven I/O.

Partial Closing of a Connection with the shutdown() Routine is Not Supported

AF_MIPC supports full closure of a connection using the shutdown() routine:

 shutdown(fd,SHUT_RDWR)

It does not support partial shutdown of a connection using the shutdown() routine with either SHUT_RD
or SHUT_WR.

Receiving Data into More than One iovec with recvmsg() is Not Supported

AF_MIPC does not support receiving data into more than one iovec when the recvmsg() routine is used.

The Use of connect() with Connectionless Sockets is Not Supported

AF_MIPC does not support the use of the connect() routinewith connectionless sockets--SOCK_DGRAM
and SOCK_RDM.

6.7. Differences Between AF_MIPC and mipc_ Sockets

The AF_MIPC APIuses the BSD socket API; the mipc_ API has its own proprietary API. This section lists
significant differences between the two sets of APIs.

• The AF_MIPC API uses the sockaddr_mipc structure for socket addresses (see AF_MIPC Socket Address
Structure on page 72); the mipc_ API uses its own mipc_sockaddr structure for socket addresses (see The
mipc_sockaddr Structure on page 36).

• AF_MIPC sockets cannot send or receive data at interrupt level.

• AF_MIPC sockets cannot send or receive data using zero-copy buffers.

• The following SOL_MIPC socket options are not supported by AF_MIPC:

 – MIPC_SO_NBIO

 This mipc_ socket option allows you to configure a socket for non-blocking operation. You can configure an
AF_MIPC socket for non-blocking operation using standard socket mechanisms, such as the ioctl()
FIONBIO request or the fcntl() O_NONBLOCK flag.

 – MIPC_SO_CONNECTED_CALLBACK

 – MIPC_SO_CONNECTREFUSED_CALLBACK

78 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 – MIPC_SO_DISCONNECTED_CALLBACK

 – MIPC_SO_NODEJOIN_CALLBACK

 – MIPC_SO_NODELEFT_CALLBACK

 – MIPC_SO_RX_CALLBACK

 – MIPC_SO_TXBUFAVAIL_CALLBACK

 – MIPC_SO_RXQUEUED_CALLBACK

 – MIPC_SO_TXBUFAVAIL_THRESHOLD

• AF_MIPC does not provide asynchronous notification of nodes joining or leaving a bus.

 For mipc_, this is provided through the MIPC_SO_NODEJOIN_CALLBACK and
MIPC_SO_NODELEFT_CALLBACK routines.

79 | Documentation

Wind River MIPC Programmer's Guide, 2.0

7. MIPC DEMO
Introduction on page 80

Including the Demo Application in a Project on page 80

Running the Demo Application on page 80

Sample Demo Output on page 82

7.1. Introduction

MIPC provides a demo application that illustrates MIPC's ability to send and receive data using different
types of sockets and connections. In addition, the source code for the application gives software designers
who are new to MIPC an example of how to write programs using MIPC's AF_MIPC socket API (for the
Linux demo) or the mipc_ socket API (for the VxWorks demo). The source code for the application is
located at:

 For VxWorks:

 installDir/vxworks-6.8/target/src/multios_ipc/demo/mipcdemo.c

 For Linux:

 installDir/wrlinux-3.0/layers/wrll-multicore/dist/multios_tools/src/mipcdemo.c

The demo application contains three demos in which a client and a server exchange data. The demos
illustrate:

• Connectionless data exchange using DGRAM-type sockets (Demo 1).

• Datagram connections using SEQPACKET-type sockets (Demo 2).

• Byte stream connections using STREAM-type sockets (Demo 3).

As each demo runs, the client and server print out informational messages that allow the user to follow
along with the operations being performed (for sample output see Sample Demo Output on page 82).

7.2. Including the Demo Application in a Project

If MIPC is included in a Linux Platform Project, the demo application is included with it by default.

To include the demo application in a VxWorks Image Project, you need to include the MIPC demo
(INCLUDE_MIPC_DEMO) component in your project.

7.3. Running the Demo Application

Before you run the demo application, you should note the following:

80 | Documentation

Wind River MIPC Programmer's Guide, 2.0

• The demo application assumes that nodes running the application are on a bus called main (#define
MIPC_DEMO_DEFAULT_BUS "main"). If you want to run the demo on nodes that are not on main, you
will need to edit the file mipcdemo.c and replace main with the name of the bus that the nodes are on (for
the path to mipcdemo.c, see Introduction on page 80).

• The demo application allows only a single server and a single client to be active at the same time. Running
more than one client or server at a time is likely to make the demo fail.

To run the demo application and then terminate it when you are done with it:

1. Start the server on a node with one of the following commands:

 mipcdemo (VxWorks)mipcdemo & (Linux)

2. Start the client on the same or a different node and run a specific demo or all three demos with the one of
the following commands:

 For VxWorks:

 mipcdemo "all" (runs all three demos)

 mipcdemo "N" or mipcdemo N, where N is the number of the demo.

 For Linux:

 mipcdemo all (runs all three demos)

 mipcdemo N, where N is the number of the demo.

 The demos are numbered as follows:

 1: MIPC DGRAM demo.

 2: MIPC SEQPACKET demo.

 3: MIPC STREAM demo.

3. Terminate the demo with the following command on either the client's node or the server's node:

 For VxWorks:

 mipcdemo "stop"

 For Linux:

 mipcdemo stop

For mipcdemo usage information, enter the following:

 For VxWorks:

 mipcdemo "help" or mipcdemo help

 For Linux:

 mipcdemo help

This displays information equivalent to that in the preceding steps.

81 | Documentation

Wind River MIPC Programmer's Guide, 2.0

Error During Operation of Demo

If the demo server or client detects a problem while running a demo, it immediately issues an error
message and terminates operation. When this happens:

 For VxWorks:

 Reboot the node or nodes that the client and server are running on--you cannot simply restart the client
and server.

 For Linux:

 Terminate any remaining demo, if you used mipcdemo with all, and then restart both the demo server and
client.

7.4. Sample Demo Output

The following is sample output for a client and server running on the same node.

MIPC DGRAM Demo

The following is sample output for the following command:

 mipcdemo "1" (VxWorks) mipcdemo 1 (Linux)

 MIPC DGRAM demo started client: sending 10 packets of 100 bytes server: received 10 packets of 100 bytes client: sending 100 packets of 1000 bytes server: received 100 packets of 1000 bytes

 MIPC DGRAM demo finished

MIPC SEQPACKET Demo

The following is sample output for the following command:

 mipcdemo "2" (VxWorks) mipcdemo 2 (Linux)

 MIPC SEQPACKET demo started client: connecting to server server: waiting for connection request from client client: sending 10 packets of 100 bytes server: received 10 packets of 100 bytes server: sending 10 replies of 100 bytes server: connection to client closed client: received 10 replies of 100 bytes client: disconnected from server client: connecting to server ...

MIPC STREAM Demo

The following is sample output for the following command:

 mipcdemo "3" (VxWorks) mipcdemo 3 (Linux)

82 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 MIPC STREAM demo started client: connecting to server server: waiting for connection request from client client: sending 100 packets of 1000 bytes server: received 100 packets of 1000 bytes server: sending 0 replies of 0 bytes server: connection to client closed client: received 0 replies of 0 bytes client: disconnected from server client: connecting to server ...

83 | Documentation

Wind River MIPC Programmer's Guide, 2.0

8. MIPC SHOW ROUTINES (VXWORKS)
Introduction on page 84

The mipcHelp Command on page 84

The mipcShow Command on page 84

The mipcShowBus Command on page 84

The mipcShowNode Command on page 85

The mipcShowPort Command on page 85

8.1. Introduction

MIPC provides the following command-line show routines:

 mipcHelp (see The mipcHelp Command on page 84)

 mipcShow (see The mipcShow Command on page 84)

 mipcShowBus (see The mipcShowBus Command on page 84)

 mipcShowNode (see The mipcShowNode Command on page 85)

 mipcShowPort (see The mipcShowPort Command on page 85)

8.2. The mipcHelp Command

The mipcHelp() command displays information about the other show commands:

 -> mipcHelp

 MIPC { installed version: 2.0 available show commands: mipcHelp - this command mipcShow - basic information about the system and buses mipcShowBus <busNum> - bus information mipcShowNode <busNum>,<nodeNum> - node information on the bus mipcShowPort <busNum>,<nodeNum>,<portNum> - port information on specified node on the bus }

8.3. The mipcShow Command

The mipcShow() command displays general information about your MIPC system. The command does not
take any arguments. The following is sample output:

 -> mipcShow MIPC-SM SYSTEM { base address of SM: 0x84000000 SM memory pool region: size=0x1fffd8 used=0x4d7a8 unused=0x1b2830 bytes maximum buses: 1 buses: { 0-"main" } default bus: 0 my node: 0 }

8.4. The mipcShowBus Command

84 | Documentation

Wind River MIPC Programmer's Guide, 2.0

The mipcShowBus() command displays information about a specified bus. The syntax of the command is:

 mipcShowBus busNumber

The node on which the command is issued must be attached to the specified bus.

The following is sample output:

 -> mipcShowBus 0 MIPC-SM BUS 0 { bus name: "main" maximum nodes: 2 my node number: 0 active nodes: { 0, 1 } node 0 statistics mode: none }

8.5. The mipcShowNode Command

The mipcShowNode() command displays information about a node on a specified bus. The syntax of the
command is:

 mipcShowNodebusNumber,nodeNumber

The node on which the command is issued must be attached to the specified bus.

The following is sample output:

 -> mipcShowNode 0,0 MIPC-SM NODE 0.0

 {

 current state: active (signature=466, heartbeat=36)

 number of ports: 32

 qos: 41 (ISR deferred mode)

 packet pool

 packet size: 1520

 number of buffers: 100

 available buffers: yes

 event pool

 number of events: 32

 available events: yes

 active ports: { 1, 15 }

 }

8.6. The mipcShowPort Command

The mipcShowPort() command displays information about a specified port. The syntax of the command is:

85 | Documentation

Wind River MIPC Programmer's Guide, 2.0

 mipcShowPort busNumber,nodeNumber,portNumber

The node on which the command is issued must be attached to the specified bus.

The following is sample output:

 -> mipcShowPort 0,1,4 MIPC-SM PORT 0.1.4

 {

 port active: yes

 available buffers: yes

 buffer allocation: 8

 }

86 | Documentation

Wind River MIPC Programmer's Guide, 2.0

	Wind River MIPC Programmer's Guide, 2.0
	Overview
	Introduction
	Terminology
	Architectural Overview of MIPC Communication
	Restrictions on the Use of MIPC
	Debugging a MIPC Target
	Organization of This Document

	VxWorks: Building MIPC
	Introduction
	VxWorks Build Components for MIPC
	MIPC Configuration Parameters for VxWorks

	Linux: Building MIPC
	Introduction
	Including MIPC in a Linux Build Configuration
	Configuring the MIPC Kconfig Component and Its Parameters
	Loading the MIPC Kernel Modules

	MIPC_ API FOR KERNEL APPLICATIONS
	Introductions
	The mipc_ API
	Express Data Transfer
	Mipc_ API Code Examples
	Mipc_ API Sample Application (VxWorks)

	AF_MIPC API (LINUX ONLY)
	Introduction
	AF_MIPC Socket Address Structure
	AF_MIPC Socket API
	Informational Routines Added to the AF_MIPC Socket API
	AF_MIPC Symbols for MIPC Version Numbers
	Features of BSD Sockets Not Supported by AF_MIPC
	Differences Between AF_MIPC and mipc_ Sockets

	MIPC Demo
	Introduction
	Including the Demo Application in a Project
	Running the Demo Application
	Sample Demo Output

	MIPC Show Routines (VxWorks)
	Introduction
	The mipcHelp Command
	The mipcShow Command
	The mipcShowBus Command
	The mipcShowNode Command
	The mipcShowPort Command

